4 research outputs found

    A resonant-term-based model including a nascent disk, precession, and oblateness: application to GJ 876

    Full text link
    Investigations of two resonant planets orbiting a star or two resonant satellites orbiting a planet often rely on a few resonant and secular terms in order to obtain a representative quantitative description of the system's dynamical evolution. We present a semianalytic model which traces the orbital evolution of any two resonant bodies in a first- through fourth-order eccentricity or inclination-based resonance dominated by the resonant and secular arguments of the user's choosing. By considering the variation of libration width with different orbital parameters, we identify regions of phase space which give rise to different resonant ''depths,'' and propose methods to model libration profiles. We apply the model to the GJ 876 extrasolar planetary system, quantify the relative importance of the relevant resonant and secular contributions, and thereby assess the goodness of the common approximation of representing the system by just the presumably dominant terms. We highlight the danger in using ''order'' as the metric for accuracy in the orbital solution by revealing the unnatural libration centers produced by the second-order, but not first-order, solution, and by demonstrating that the true orbital solution lies somewhere ''in-between'' the third- and fourth-order solutions. We also present formulas used to incorporate perturbations from central-body oblateness and precession, and a protoplanetary or protosatellite thin disk with gaps, into a resonant system. We quantify these contributions to the GJ 876 system, and thereby highlight the conditions which must exist for multi-planet exosystems to be significantly influenced by such factors. We find that massive enough disks may convert resonant libration into circulation; such disk-induced signatures may provide constraints for future studies of exoplanet systems.Comment: 39 pages of body text, 21 figures, 5 tables, 1 appendix, accepted for publication in Celestial Mechanics and Dynamical Astronom

    On the origin and evolution of the material in 67P/Churyumov-Gerasimenko

    Get PDF
    International audiencePrimitive objects like comets hold important information on the material that formed our solar system. Several comets have been visited by spacecraft and many more have been observed through Earth- and space-based telescopes. Still our understanding remains limited. Molecular abundances in comets have been shown to be similar to interstellar ices and thus indicate that common processes and conditions were involved in their formation. The samples returned by the Stardust mission to comet Wild 2 showed that the bulk refractory material was processed by high temperatures in the vicinity of the early sun. The recent Rosetta mission acquired a wealth of new data on the composition of comet 67P/Churyumov-Gerasimenko (hereafter 67P/C-G) and complemented earlier observations of other comets. The isotopic, elemental, and molecular abundances of the volatile, semi-volatile, and refractory phases brought many new insights into the origin and processing of the incorporated material. The emerging picture after Rosetta is that at least part of the volatile material was formed before the solar system and that cometary nuclei agglomerated over a wide range of heliocentric distances, different from where they are found today. Deviations from bulk solar system abundances indicate that the material was not fully homogenized at the location of comet formation, despite the radial mixing implied by the Stardust results. Post-formation evolution of the material might play an important role, which further complicates the picture. This paper discusses these major findings of the Rosetta mission with respect to the origin of the material and puts them in the context of what we know from other comets and solar system objects
    corecore