354 research outputs found

    Explicit asymptotic modelling of transient Love waves propagated along a thin coating

    Get PDF
    The official published version can be obtained from the link below.An explicit asymptotic model for transient Love waves is derived from the exact equations of anti-plane elasticity. The perturbation procedure relies upon the slow decay of low-frequency Love waves to approximate the displacement field in the substrate by a power series in the depth coordinate. When appropriate decay conditions are imposed on the series, one obtains a model equation governing the displacement at the interface between the coating and the substrate. Unusually, the model equation contains a term with a pseudo-differential operator. This result is confirmed and interpreted by analysing the exact solution obtained by integral transforms. The performance of the derived model is illustrated by numerical examples.This work is sponsored by the grant from Higher Education of Pakistan and by the Brunel University’s “BRIEF” research award

    Spinor Field in Bianchi type-I Universe: regular solutions

    Get PDF
    Self-consistent solutions to the nonlinear spinor field equations in General Relativity has been studied for the case of Bianchi type-I (B-I) space-time. It has been shown that, for some special type of nonliearity the model provides regular solution, but this singularity-free solutions are attained at the cost of broken dominant energy condition in Hawking-Penrose theorem. It has also been shown that the introduction of Λ\Lambda-term in the Lagrangian generates oscillations of the B-I model, which is not the case in absence of Λ\Lambda term. Moreover, for the linear spinor field, the Λ\Lambda term provides oscillatory solutions, those are regular everywhere, without violating dominant energy condition. Key words: Nonlinear spinor field (NLSF), Bianch type -I model (B-I), Λ\Lambda term PACS 98.80.C CosmologyComment: RevTex, 21 page

    Solar Grand Minima and random fluctuations in dynamo parameters

    Full text link
    We consider to what extent the long-term dynamics of cyclic solar activity in the form of Grand Minima can be associated with random fluctuations of the parameters governing the solar dynamo. We consider fluctuations of the alpha-coefficient in the conventional Parker migratory dynamo, and also in slightly more sophisticated dynamo models, and demonstrate that they can mimic the gross features of the phenomenon of the occurrence of Grand Minima over a suitable parameter range. The temporal distribution of these Grand Minima appears chaotic, with a more or less exponential waiting time distribution, typical of Poisson processes. In contrast however, the available reconstruction of Grand Minima statistics based on cosmogenic isotope data demonstrates substantial deviations from this exponential law. We were unable to reproduce the non-Poissonic tail of the waiting time distribution either in the framework of a simple alpha-quenched Parker model, or in its straightforward generalization, nor in simple models with feedback on the differential rotation. We suggest that the disagreement may only be apparent and is plausibly related to the limited observational data, and that the observations and results of numerical modeling can be consistent and represent physically similar dynamo regimes.Comment: Solar Physics, in prin

    Mutations of the BRAF gene in human cancer

    Get PDF
    Cancers arise owing to the accumulation of mutations in critical genes that alter normal programmes of cell proliferation, differentiation and death. As the first stage of a systematic genome-wide screen for these genes, we have prioritized for analysis signalling pathways in which at least one gene is mutated in human cancer. The RAS RAF MEK ERK MAP kinase pathway mediates cellular responses to growth signals. RAS is mutated to an oncogenic form in about 15% of human cancer. The three RAF genes code for cytoplasmic serine/threonine kinases that are regulated by binding RAS. Here we report BRAF somatic missense mutations in 66% of malignant melanomas and at lower frequency in a wide range of human cancers. All mutations are within the kinase domain, with a single substitution (V599E) accounting for 80%. Mutated BRAF proteins have elevated kinase activity and are transforming in NIH3T3 cells. Furthermore, RAS function is not required for the growth of cancer cell lines with the V599E mutation. As BRAF is a serine/threonine kinase that is commonly activated by somatic point mutation in human cancer, it may provide new therapeutic opportunities in malignant melanoma

    Simulations of galactic dynamos

    Full text link
    We review our current understanding of galactic dynamo theory, paying particular attention to numerical simulations both of the mean-field equations and the original three-dimensional equations relevant to describing the magnetic field evolution for a turbulent flow. We emphasize the theoretical difficulties in explaining non-axisymmetric magnetic fields in galaxies and discuss the observational basis for such results in terms of rotation measure analysis. Next, we discuss nonlinear theory, the role of magnetic helicity conservation and magnetic helicity fluxes. This leads to the possibility that galactic magnetic fields may be bi-helical, with opposite signs of helicity and large and small length scales. We discuss their observational signatures and close by discussing the possibilities of explaining the origin of primordial magnetic fields.Comment: 28 pages, 15 figure, to appear in Lecture Notes in Physics "Magnetic fields in diffuse media", Eds. E. de Gouveia Dal Pino and A. Lazaria

    ASTEC -- the Aarhus STellar Evolution Code

    Full text link
    The Aarhus code is the result of a long development, starting in 1974, and still ongoing. A novel feature is the integration of the computation of adiabatic oscillations for specified models as part of the code. It offers substantial flexibility in terms of microphysics and has been carefully tested for the computation of solar models. However, considerable development is still required in the treatment of nuclear reactions, diffusion and convective mixing.Comment: Astrophys. Space Sci, in the pres

    Untangling the complexities of processing and analysis for untargeted LC-MS data using open-source tools

    Get PDF
    Untargeted metabolomics is a powerful tool for measuring and understanding complex biological chemistries. However, employment, bioinformatics and downstream analysis of mass spectrometry (MS) data can be daunting for inexperienced users. Numerous open-source and free-to-use data processing and analysis tools exist for various untargeted MS approaches, including liquid chromatography (LC), but choosing the ‘correct’ pipeline isn’t straight-forward. This tutorial, in conjunction with a user-friendly online guide presents a workflow for connecting these tools to process, analyse and annotate various untargeted MS datasets. The workflow is intended to guide exploratory analysis in order to inform decision-making regarding costly and time-consuming downstream targeted MS approaches. We provide practical advice concerning experimental design, organisation of data and downstream analysis, and offer details on sharing and storing valuable MS data for posterity. The workflow is editable and modular, allowing flexibility for updated/changing methodologies and increased clarity and detail as user participation becomes more common. Hence, the authors welcome contributions and improvements to the workflow via the online repository. We believe that this workflow will streamline and condense complex mass-spectrometry approaches into easier, more manageable, analyses thereby generating opportunities for researchers previously discouraged by inaccessible and overly complicated software

    Current status of turbulent dynamo theory: From large-scale to small-scale dynamos

    Full text link
    Several recent advances in turbulent dynamo theory are reviewed. High resolution simulations of small-scale and large-scale dynamo action in periodic domains are compared with each other and contrasted with similar results at low magnetic Prandtl numbers. It is argued that all the different cases show similarities at intermediate length scales. On the other hand, in the presence of helicity of the turbulence, power develops on large scales, which is not present in non-helical small-scale turbulent dynamos. At small length scales, differences occur in connection with the dissipation cutoff scales associated with the respective value of the magnetic Prandtl number. These differences are found to be independent of whether or not there is large-scale dynamo action. However, large-scale dynamos in homogeneous systems are shown to suffer from resistive slow-down even at intermediate length scales. The results from simulations are connected to mean field theory and its applications. Recent work on helicity fluxes to alleviate large-scale dynamo quenching, shear dynamos, nonlocal effects and magnetic structures from strong density stratification are highlighted. Several insights which arise from analytic considerations of small-scale dynamos are discussed.Comment: 36 pages, 11 figures, Spa. Sci. Rev., submitted to the special issue "Magnetism in the Universe" (ed. A. Balogh
    corecore