291 research outputs found

    Church Prohibition of Books

    Get PDF

    Church Prohibition of Books

    Get PDF

    A quantitative genetic approach to assess the evolutionary potential of a coastal marine fish to ocean acidification

    Get PDF
    Assessing the potential of marine organisms to adapt genetically to increasing oceanic CO2 levels requires proxies such as heritability of fitness-related traits under ocean acidification (OA). We applied a quantitative genetic method to derive the first heritability estimate of survival under elevated CO2 conditions in a metazoan. Specifically, we reared offspring, selected from a wild coastal fish population (Atlantic silverside, Menidia menidia), at high CO2 conditions (~2300 μatm) from fertilization to 15 days posthatch, which significantly reduced survival compared to controls. Perished and surviving offspring were quantitatively sampled and genotyped along with their parents, using eight polymorphic microsatellite loci, to reconstruct a parent–offspring pedigree and estimate variance components. Genetically related individuals were phenotypically more similar (i.e., survived similarly long at elevated CO2 conditions) than unrelated individuals, which translated into a significantly nonzero heritability (0.20 ± 0.07). The contribution of maternal effects was surprisingly small (0.05 ± 0.04) and nonsignificant. Survival among replicates was positively correlated with genetic diversity, particularly with observed heterozygosity. We conclude that early life survival of M. menidia under high CO2 levels has a significant additive genetic component that could elicit an evolutionary response to OA, depending on the strength and direction of future selection

    Supercritical biharmonic equations with power-type nonlinearity

    Full text link
    The biharmonic supercritical equation Δ2u=up1u\Delta^2u=|u|^{p-1}u, where n>4n>4 and p>(n+4)/(n4)p>(n+4)/(n-4), is studied in the whole space Rn\mathbb{R}^n as well as in a modified form with λ(1+u)p\lambda(1+u)^p as right-hand-side with an additional eigenvalue parameter λ>0\lambda>0 in the unit ball, in the latter case together with Dirichlet boundary conditions. As for entire regular radial solutions we prove oscillatory behaviour around the explicitly known radial {\it singular} solution, provided p((n+4)/(n4),pc)p\in((n+4)/(n-4),p_c), where pc((n+4)/(n4),]p_c\in ((n+4)/(n-4),\infty] is a further critical exponent, which was introduced in a recent work by Gazzola and the second author. The third author proved already that these oscillations do not occur in the complementing case, where ppcp\ge p_c. Concerning the Dirichlet problem we prove existence of at least one singular solution with corresponding eigenvalue parameter. Moreover, for the extremal solution in the bifurcation diagram for this nonlinear biharmonic eigenvalue problem, we prove smoothness as long as p((n+4)/(n4),pc)p\in((n+4)/(n-4),p_c)

    The critical dimension for a 4th order problem with singular nonlinearity

    Full text link
    We study the regularity of the extremal solution of the semilinear biharmonic equation \bi u=\f{\lambda}{(1-u)^2}, which models a simple Micro-Electromechanical System (MEMS) device on a ball B\subset\IR^N, under Dirichlet boundary conditions u=νu=0u=\partial_\nu u=0 on B\partial B. We complete here the results of F.H. Lin and Y.S. Yang \cite{LY} regarding the identification of a "pull-in voltage" \la^*>0 such that a stable classical solution u_\la with 0 exists for \la\in (0,\la^*), while there is none of any kind when \la>\la^*. Our main result asserts that the extremal solution uλu_{\lambda^*} is regular (supBuλ<1)(\sup_B u_{\lambda^*} <1) provided N8 N \le 8 while uλu_{\lambda^*} is singular (supBuλ=1\sup_B u_{\lambda^*} =1) for N9N \ge 9, in which case 1C0x4/3uλ(x)1x4/31-C_0|x|^{4/3}\leq u_{\lambda^*} (x) \leq 1-|x|^{4/3} on the unit ball, where C0:=(λλ)1/3 C_0:= (\frac{\lambda^*}{\overline{\lambda}})^{1/3} and λˉ:=8/9(N2/3)(N8/3) \bar{\lambda}:= {8/9} (N-{2/3}) (N- {8/3}).Comment: 19 pages. This paper completes and replaces a paper (with a similar title) which appeared in arXiv:0810.5380. Updated versions --if any-- of this author's papers can be downloaded at this http://www.birs.ca/~nassif

    Generalized conductance sum rule in atomic break junctions

    Full text link
    When an atomic-size break junction is mechanically stretched, the total conductance of the contact remains approximately constant over a wide range of elongations, although at the same time the transmissions of the individual channels (valence orbitals of the junction atom) undergo strong variations. We propose a microscopic explanation of this phenomenon, based on Coulomb correlation effects between electrons in valence orbitals of the junction atom. The resulting approximate conductance quantization is closely related to the Friedel sum rule.Comment: 4 pages, 1 figure, appears in Proceedings of the NATO Advanced Research Workshop ``Size dependent magnetic scattering'', Pecs, Hungary, May 28 - June 1, 200

    Equilibrium and nonequilibrium fluctuations at the interface between two fluid phases

    Full text link
    We have performed small-angle light-scattering measurements of the static structure factor of a critical binary mixture undergoing diffusive partial remixing. An uncommon scattering geometry integrates the structure factor over the sample thickness, allowing different regions of the concentration profile to be probed simultaneously. Our experiment shows the existence of interface capillary waves throughout the macroscopic evolution to an equilibrium interface, and allows to derive the time evolution of surface tension. Interfacial properties are shown to attain their equilibrium values quickly compared to the system's macroscopic equilibration time.Comment: 10 pages, 5 figures, submitted to PR

    Modeling phase behavior for quantifying micro-pervaporation experiments

    Full text link
    We present a theoretical model for the evolution of mixture concentrations in a micro-pervaporation device, similar to those recently presented experimentally. The described device makes use of the pervaporation of water through a thin PDMS membrane to build up a solute concentration profile inside a long microfluidic channel. We simplify the evolution of this profile in binary mixtures to a one-dimensional model which comprises two concentration-dependent coefficients. The model then provides a link between directly accessible experimental observations, such as the widths of dense phases or their growth velocity, and the underlying chemical potentials and phenomenological coefficients. It shall thus be useful for quantifying the thermodynamic and dynamic properties of dilute and dense binary mixtures.Comment: to be published in EPJ-

    Oscillations of a solid sphere falling through a wormlike micellar fluid

    Full text link
    We present an experimental study of the motion of a solid sphere falling through a wormlike micellar fluid. While smaller or lighter spheres quickly reach a terminal velocity, larger or heavier spheres are found to oscillate in the direction of their falling motion. The onset of this instability correlates with a critical value of the velocity gradient scale Γc1\Gamma_{c}\sim 1 s1^{-1}. We relate this condition to the known complex rheology of wormlike micellar fluids, and suggest that the unsteady motion of the sphere is caused by the formation and breaking of flow-induced structures.Comment: 4 pages, 4 figure
    corecore