12 research outputs found

    Parameter Estimation and Uncertainty Quantification of a Subframe with Mass Loaded Bushings

    No full text
    In the automotive industry components are often connected through rubber bushings. The bushingsʼ material properties are usually not well known. In computational models these properties are parametrised and their spread can be considerable. A good estimate of these parameters is important in various applications, including substructuring, and for uncertainty quantification of systems with connected components. This paper deals with the calibration of an industrial size finite element model of a car subframe with parametrised bushing models. Mass loading is used on the bushings to bring local bushing modes to a lower frequency region and impose a more realistic boundary condition in component testing. The model parameters can be calibrated in different ways. In this paper two approaches are considered. They are based on two test configurations, one with and one without mass loaded boundaries. In the first case only the bushing parameters are considered for the mass loaded boundary configuration. In the second case, consisting of two steps, the configuration without mass loaded boundaries is considered in which the bushing parameters are first fixed and other model parameters considered, and in the last step a subset of all parameters is considered. The calibration, validation and uncertainty quantification, using bootstrapping, have been performed using the open-source MATLAB tool FEMcali

    Pluto's haze as a surface material

    No full text
    International audiencePluto’s atmospheric haze settles out rapidly compared with geological timescales. It needs to be accounted for as a surface material, distinct from Pluto’s icy bedrock and from the volatile ices that migrate via sublimation and condensation on seasonal timescales. This paper explores how a steady supply of atmospheric haze might affect three distinct provinces on Pluto. We pose the question of why they each look so different from one another if the same haze material is settling out onto all of them. Cthulhu is a more ancient region with comparatively little present-day geological activity, where the haze appears to simply accumulate over time. Sputnik Planitia is a very active region where glacial convection, as well as sublimation and condensation rapidly refresh the surface, hiding recently deposited haze from view. Lowell Regio is a region of intermediate age featuring very distinct coloration from the rest of Pluto. Using a simple model haze particle as a colorant, we are not able to match the colors in both Lowell Regio and Cthulhu. To account for their distinct colors, we propose that after arrival at Pluto’s surface, haze particles may be less inert than might be supposed from the low surface temperatures. They must either interact with local materials and environments to produce distinct products in different regions, or else the supply of haze must be non-uniform in time and/or location, such that different products are delivered to different places
    corecore