135 research outputs found

    Mapping Antarctic crevasses and their evolution with deep learning applied to satellite radar imagery

    Get PDF
    The fracturing of glaciers and ice shelves in Antarctica influences their dynamics and stability. Hence, data on the evolving distribution of crevasses are required to better understand the evolution of the ice sheet, though such data have traditionally been difficult and time-consuming to generate. Here, we present an automated method of mapping crevasses on grounded and floating ice with the application of convolutional neural networks to Sentinel-1 synthetic aperture radar backscatter data. We apply this method across Antarctica to images acquired between 2015 and 2022, producing a 7.5-year record of composite fracture maps at monthly intervals and 50 m spatial resolution and showing the distribution of crevasses around the majority of the ice sheet margin. We develop a method of quantifying changes to the density of ice shelf fractures using a time series of crevasse maps and show increases in crevassing on Thwaites and Pine Island ice shelves over the observational period, with observed changes elsewhere in the Amundsen Sea dominated by the advection of existing crevasses. Using stress fields computed using the BISICLES ice sheet model, we show that much of this structural change has occurred in buttressing regions of these ice shelves, indicating a recent and ongoing link between fracturing and the developing dynamics of the Amundsen Sea sector

    Design descriptions in the development of machine learning based design tools

    Get PDF
    Applications of machine learning technologies are becoming ubiquitous in many sectors and their impacts, both positive and negative, are widely reported. As a result, there is substantial interest from the engineering community to integrate machine learning technologies into design workflows with a view to improving the performance of the product development process. In essence, machine learning technologies are thought to have the potential to underpin future generations of data-enabled engineering design system that will deliver radical improvements to product development and so organisational performance. In this paper we report learning from experiments where we applied machine learning to two shape-based design challenges: in a given collection of designed shapes, clustering (i) visually similar shapes and (ii) shapes that are likely to be manufactured using the same primary process. Both challenges were identified with our industry partners and are embodied in a design case study. We report early results and conclude with issues for design descriptions that need to be addressed if the full potential of machine learning is to be realised in engineering design

    Adding tree rings to North America's National Forest Inventories: an essential tool to guide drawdown of atmospheric CO2

    Get PDF
    Tree-ring time series provide long-term, annually resolved information on the growth of trees. When sampled in a systematic context, tree-ring data can be scaled to estimate the forest carbon capture and storage of landscapes, biomes, and-ultimately-the globe. A systematic effort to sample tree rings in national forest inventories would yield unprecedented temporal and spatial resolution of forest carbon dynamics and help resolve key scientific uncertainties, which we highlight in terms of evidence for forest greening (enhanced growth) versus browning (reduced growth, increased mortality). We describe jump-starting a tree-ring collection across the continent of North America, given the commitments of Canada, the United States, and Mexico to visit forest inventory plots, along with existing legacy collections. Failing to do so would be a missed opportunity to help chart an evidence-based path toward meeting national commitments to reduce net greenhouse gas emissions, urgently needed for climate stabilization and repair.Published versio
    corecore