21 research outputs found

    Soliton solutions in an effective action for SU(2) Yang-Mills theory: including effects of higher-derivative term

    Full text link
    The Skyrme-Faddeev-Niemi (SFN) model which is an O(3) σ\sigma model in three dimensional space upto fourth-order in the first derivative is regarded as a low-energy effective theory of SU(2) Yang-Mills theory. One can show from the Wilsonian renormalization group argument that the effective action of Yang-Mills theory recovers the SFN in the infrared region. However, the thoery contains an additional fourth-order term which destabilizes the soliton solution. In this paper, we derive the second derivative term perturbatively and show that the SFN model with the second derivative term possesses soliton solutions.Comment: 7 pages, 3 figure

    Arnowitt-Deser-Misner representation and Hamiltonian analysis of covariant renormalizable gravity

    Full text link
    We study the recently proposed Covariant Renormalizable Gravity (CRG), which aims to provide a generally covariant ultraviolet completion of general relativity. We obtain a space-time decomposed form --- an Arnowitt-Deser-Misner (ADM) representation --- of the CRG action. The action is found to contain time derivatives of the gravitational fields up to fourth order. Some ways to reduce the order of these time derivatives are considered. The resulting action is analyzed using the Hamiltonian formalism, which was originally adapted for constrained theories by Dirac. It is shown that the theory has a consistent set of constraints. It is, however, found that the theory exhibits four propagating physical degrees of freedom. This is one degree of freedom more than in Ho\v{r}ava-Lifshitz (HL) gravity and two more propagating modes than in general relativity. One extra physical degree of freedom has its origin in the higher order nature of the CRG action. The other extra propagating mode is a consequence of a projectability condition similarly as in HL gravity. Some additional gauge symmetry may need to be introduced in order to get rid of the extra gravitational degrees of freedom.Comment: 21 pages, LaTeX. A correction inserted to Hamiltonian formalism in Sec.

    On the Meaning of the String-Inspired Noncommutativity and its Implications

    Get PDF
    We propose an alternative interpretation for the meaning of noncommutativity of the string-inspired field theories and quantum mechanics. Arguments are presented to show that the noncommutativity generated in the stringy context should be assumed to be only between the particle coordinate observables, and not of the spacetime coordinates. Some implications of this fact for noncomutative field theories and quantum mechanics are discussed. In particular, a consistent interpretation is given for the wavefunction in quantum mechanics. An analysis of the noncommutative theories in the Schr\"odinger formulation is performed employing a generalized quantum Hamilton-Jacobi formalism. A formal structure for noncommutative quantum mechanics, richer than the one of noncommutative quantum field theory, comes out. Conditions for the classical and commutative limits of these theories have also been determined and applied in some examples.Comment: References, comments, and footnotes are included; some changes in section

    Time Dependent Solution in Cubic String Field Theory

    Full text link
    We study time dependent solutions in cubic open string field theory which are expected to describe the configuration of the rolling tachyon. We consider the truncated system consisting of component fields of level zero and two, which are expanded in terms of cosh n x^0 modes. For studying the large time behavior of the solution we need to know the coefficients of all and, in particular, large n modes. We examine numerically the coefficients of the n-th mode, and find that it has the leading n-dependence of the form (-\beta)^n \lambda^{-n^2} multiplied by a peculiar subleading part with peaks at n=2^m=4,8,16,32,64,128,.... This behavior is also reproduced analytically by solving simplified equations of motion of the tachyon system.Comment: 22 pages, 12 figures, LaTeX2e, v3:minor correction

    Time-Space Noncommutativity in Gravitational Quantum Well scenario

    Get PDF
    A novel approach to the analysis of the gravitational well problem from a second quantised description has been discussed. The second quantised formalism enables us to study the effect of time space noncommutativity in the gravitational well scenario which is hitherto unavailable in the literature. The corresponding first quantized theory reveals a leading order perturbation term of noncommutative origin. Latest experimental findings are used to estimate an upper bound on the time--space noncommutative parameter. Our results are found to be consistent with the order of magnitude estimations of other NC parameters reported earlier.Comment: 7 pages, revTe

    Noncommutative quantum mechanics and Bohm's ontological interpretation

    Full text link
    We carry out an investigation into the possibility of developing a Bohmian interpretation based on the continuous motion of point particles for noncommutative quantum mechanics. The conditions for such an interpretation to be consistent are determined, and the implications of its adoption for noncommutativity are discussed. A Bohmian analysis of the noncommutative harmonic oscillator is carried out in detail. By studying the particle motion in the oscillator orbits, we show that small-scale physics can have influence at large scales, something similar to the IR-UV mixing

    Perturbative Approach to Higher Derivative Theories with Fermions

    Full text link
    We extend the perturbative approach developed in an earlier work to deal with Lagrangians which have arbitrary higher order time derivative terms for both bosons and fermions. This approach enables us to find an effective Lagrangian with only first time derivatives order by order in the coupling constant. As in the pure bosonic case, to the first order, the quantized Hamiltonian is bounded from below whenever the potential is. We show in the example of a single complex fermion that higher derivative interactions result in an effective mass and change of vacuum for the low energy modes. The supersymmetric noncommutative Wess-Zumino model is considered as another example. We also comment on the higher derivative terms in Witten's string field theory and the effectiveness of level truncation.Comment: Latex, 21 pages, minor modification, ref. adde
    corecore