6 research outputs found

    Decoherence in Bose-Einstein Condensates: towards Bigger and Better Schroedinger Cats

    Full text link
    We consider a quantum superposition of Bose-Einstein condensates in two immiscible internal states. A decoherence rate for the resulting Schroedinger cat is calculated and shown to be a significant threat to this macroscopic quantum superposition of BEC's. An experimental scenario is outlined where the decoherence rate due to the thermal cloud is dramatically reduced thanks to trap engineering and "symmetrization" of the environment which allow for the Schroedinger cat to be an approximate pointer states.Comment: 12 pages in RevTex; improved presentation; a new comment on decoherence-free pointer subspaces in BEC; accepted in Phys.Rev.

    Inhibiting decoherence via ancilla processes

    Get PDF
    General conditions are derived for preventing the decoherence of a single two-state quantum system (qubit) in a thermal bath. The employed auxiliary systems required for this purpose are merely assumed to be weak for the general condition while various examples such as extra qubits and extra classical fields are studied for applications in quantum information processing. The general condition is confirmed with well known approaches towards inhibiting decoherence. A novel approach for decoherence-free quantum memories and quantum operations is presented by placing the qubit into the center of a sphere with extra qubits on its surface.Comment: pages 8, Revtex

    Van der Waals-Casimir-Polder interaction of an atom with a composite surface

    Full text link
    We study the dispersion interaction of the van der Waals and Casimir-Polder (vdW-CP) type between a neutral atom and the surface of a metal by allowing for nonlocal electrodynamics, i.e. electron diffusion. We consider two models: (i) bulk diffusion, and (ii) diffusion in a surface charge layer. In both cases the transition to a semiconductor is continuous as a function of the conductivity, unlike the case of a local model. The relevant parameter is the electric screening length and depends on the carrier diffusion constant. We find that for distances comparable to the screening length, vdW-CP data can distinguish between bulk and surface diffusion, hence it can be a sensitive probe for surface states.Comment: v2: expanded references, statements on current status in the field. 10 pages, 6 figure

    19

    No full text
    corecore