26,607 research outputs found

    Complex Dynamics of Correlated Electrons in Molecular Double Ionization by an Ultrashort Intense Laser Pulse

    Full text link
    With a semiclassical quasi-static model we achieve an insight into the complex dynamics of two correlated electrons under the combined influence of a two-center Coulomb potential and an intense laser field. The model calculation is able to reproduce experimental data of nitrogen molecules for a wide range of laser intensities from tunnelling to over-the-barrier regime, and predicts a significant alignment effect on the ratio of double over single ion yield. The classical trajectory analysis allows to unveil sub-cycle molecular double ionization dynamics.Comment: 5 pages, 5 figures. to appear in Phys. Rev. Lett.(2007

    A model of rotating hotspots for 3:2 frequency ratio of HFQPOs in black hole X-ray binaries

    Full text link
    We propose a model to explain a puzzling 3:2 frequency ratio of high frequency quasi-periodic oscillations (HFQPOs) in black hole (BH) X-ray binaries, GRO J1655-40, GRS 1915+105 and XTE J1550-564. In our model a non-axisymmetric magnetic coupling (MC) of a rotating black hole (BH) with its surrounding accretion disc coexists with the Blandford-Znajek (BZ) process. The upper frequency is fitted by a rotating hotspot near the inner edge of the disc, which is produced by the energy transferred from the BH to the disc, and the lower frequency is fitted by another rotating hotspot somewhere away from the inner edge of the disc, which arises from the screw instability of the magnetic field on the disc. It turns out that the 3:2 frequency ratio of HFQPOs in these X-ray binaries could be well fitted to the observational data with a much narrower range of the BH spin. In addition, the spectral properties of HFQPOs are discussed. The correlation of HFQPOs with jets from microquasars is contained naturally in our model.Comment: 8 pages, 4 figures. accepted by MNRA

    Precision spectroscopy and density-dependent frequency shifts in ultracold Sr

    Full text link
    By varying the density of an ultracold 88^{88}Sr sample from 10910^9 cm−3^{-3} to >1012> 10^{12} cm−3^{-3}, we make the first definitive measurement of the density-related frequency shift and linewidth broadening of the 1S0^1S_0 - 3P1^3P_1 optical clock transition in an alkaline earth system. In addition, we report the most accurate measurement to date of the 88^{88}Sr 1S0−3P1^1S_0 - ^3P_1 optical clock transition frequency. Including a detailed analysis of systematic errors, the frequency is (434829121312334±20stat±33sys434 829 121 312 334 \pm 20_{stat} \pm 33_{sys}) Hz.Comment: 4 pages, 4 figures, 1 table. submitte

    Momentum Distribution of Near-Zero-Energy Photoelectrons in the Strong-Field Tunneling Ionization in the Long Wavelength Limit

    Full text link
    We investigate the ionization dynamics of Argon atoms irradiated by an ultrashort intense laser of a wavelength up to 3100 nm, addressing the momentum distribution of the photoelectrons with near-zero-energy. We find a surprising accumulation in the momentum distribution corresponding to meV energy and a \textquotedblleft V"-like structure at the slightly larger transverse momenta. Semiclassical simulations indicate the crucial role of the Coulomb attraction between the escaping electron and the remaining ion at extremely large distance. Tracing back classical trajectories, we find the tunneling electrons born in a certain window of the field phase and transverse velocity are responsible for the striking accumulation. Our theoretical results are consistent with recent meV-resolved high-precision measurements.Comment: 5 pages, 4 figure

    Classical Trajectory Diagnosis of Finger-Like Pattern in the Correlated Electron Momentum Distribution for Helium Double Ionization

    Full text link
    With a semiclassical quasistatic model we identify the distinct roles of nuclear Coulomb attraction, final state electron repulsion and electron-field interaction in forming the finger-like (or V-shaped) pattern in the correlated electron momentum distribution for Helium double ionization [Phys. Rev. Lett. \textbf{99}, 263002; \emph{ibid}, 263003 (2007)]. The underlying microscopic trajectory configurations responsible for asymmetric electron energy sharing after electron-electron collision have been uncovered and corresponding sub-cycle dynamics are analyzed. The correlation pattern is found to be sensitive to the transverse momentum of correlated electrons.Comment: 5pages 3figure

    A Memory Bandwidth-Efficient Hybrid Radix Sort on GPUs

    Full text link
    Sorting is at the core of many database operations, such as index creation, sort-merge joins, and user-requested output sorting. As GPUs are emerging as a promising platform to accelerate various operations, sorting on GPUs becomes a viable endeavour. Over the past few years, several improvements have been proposed for sorting on GPUs, leading to the first radix sort implementations that achieve a sorting rate of over one billion 32-bit keys per second. Yet, state-of-the-art approaches are heavily memory bandwidth-bound, as they require substantially more memory transfers than their CPU-based counterparts. Our work proposes a novel approach that almost halves the amount of memory transfers and, therefore, considerably lifts the memory bandwidth limitation. Being able to sort two gigabytes of eight-byte records in as little as 50 milliseconds, our approach achieves a 2.32-fold improvement over the state-of-the-art GPU-based radix sort for uniform distributions, sustaining a minimum speed-up of no less than a factor of 1.66 for skewed distributions. To address inputs that either do not reside on the GPU or exceed the available device memory, we build on our efficient GPU sorting approach with a pipelined heterogeneous sorting algorithm that mitigates the overhead associated with PCIe data transfers. Comparing the end-to-end sorting performance to the state-of-the-art CPU-based radix sort running 16 threads, our heterogeneous approach achieves a 2.06-fold and a 1.53-fold improvement for sorting 64 GB key-value pairs with a skewed and a uniform distribution, respectively.Comment: 16 pages, accepted at SIGMOD 201

    Enhancement of Friction between Carbon Nanotubes: An Efficient Strategy to Strengthen Fibers

    Full text link
    Interfacial friction plays a crucial role in the mechanical properties of carbon nanotube based fibers, composites, and devices. Here we use molecular dynamics simulation to investigate the pressure effect on the friction within carbon nanotube bundles. It reveals that the intertube frictional force can be increased by a factor of 1.5 ~ 4, depending on tube chirality and radius, when all tubes collapse above a critical pressure and when the bundle remains collapsed with unloading down to atmospheric pressure. Furthermore, the overall cross-sectional area also decreases significantly for the collapsed structure, making the bundle stronger. Our study suggests a new and efficient way to reinforce nanotube fibers, possibly stronger than carbon fibers, for usage at ambient conditions.Comment: revtex, 5 pages, accepted by ACS Nano 10 Dec 200

    Adsorption of oxygen-containing functional groups on free and supported graphene using point contact

    Get PDF
    First-principles electronic structure calculations based on spin-polarized density functional theory were carried out to study the adsorption of oxygen-containing functional groups -OH, -CHO, and -COOH on a two-dimensional (2D) infinite graphene sheet without edge states and defects. We find that the energy gain of adsorption can be significantly improved when the graphene sheet is supported via a point contact, a prototype for graphene sheet supported by catalysts, nanoparticles or nanopillars, or a surface with steps, edges, adatoms, or defects. This was modeled by placing a single atom of Fe, Co, and Ni under the graphene surface. Thus supported graphene not only becomes magnetic, but the carbon atoms in contact with the metal atoms become chemically more active as well. The use of point contact support to improve adsorption has advantages over that of introducing defects: (1) It does not destroy the intrinsic 2D geometry of the graphene sheet. (2) Patterned structures can be created by tailoring the position of the metal atoms supporting the graphene sheet. (3) The geometry distortion created by point contact can be made more uniform and lead to better adsorption energies. (4) Reduction of the work function of supported graphene makes the manipulation of electrons more flexible and controllable in tuning their electronic structure and magnetic properties
    • …
    corecore