254,211 research outputs found
Reliability bounds for fault-tolerant systems with competing responses to component failures
Bounds are established on the probability of system failure for fault-tolerant systems of the type used, for example, in aviation control. Event series leading to system failure are assumed to follow a semi-Markov model in which the potential sojourn times associated with component failures have exponential distributions and those associated with system responses have distributions with unspecified form. A product form of the bounds is derived by using a model that provides for multiple competing system responses to component failures
External losses in photoemission from strongly correlated quasi two-dimensional solids
New expressions are derived for photoemission, which allow experimental
electron energy loss data to be used for estimating losses in photoemission.
The derivation builds on new results for dielectric response and mean free
paths of strongly correlated systems of two dimensional layers. Numerical
evaluations are made for (Bi2212) by using a
parametrized loss function. The mean free path for Bi2212 is calculated and
found to be substantially larger than obtained by Norman et al in a recent
paper. The photocurrent is expressed as the convolution of the intrinsic
approximation for the current from a specific 2D layer with an effective loss
function. The observed current is the sum of such currents from the first few
layers. The photo electron from a specific layer is found to excite low
energy acoustic plasmon modes due to the coupling between the layers.
These modes give rise to an asymmetric power law broadening of the photo
current an isolated two dimensional layer would have given. We define an
asymmetry index where a contribution from a Luttinger lineshape is additive to
the contribution from our broadening function. Already the loss effect
considered here gives broadening comparable to what is observed experimentally.
A superconductor with a gapped loss function is predicted to have a
peak-dip-hump lineshape similar to what has been observed, and with the same
qualitative behavior as predicted in the recent work by Campuzano et al.Comment: 17 pages, 10 figure
Shuttle system ascent aerodynamic and plume heating
The shuttle program provided a challenge to the aerothermodynamicist due to the complexity of the flow field around the vehicle during ascent, since the configuration causes multiple shock interactions between the elements. Wind tunnel tests provided data for the prediction of the ascent design heating environment which involves both plume and aerodynamic heating phenomena. The approach for the heating methodology based on ground test firings and the use of the wind tunnel data to formulate the math models is discussed
A theoretical basis for the analysis of redundant software subject to coincident errors
Fundamental to the development of redundant software techniques fault-tolerant software, is an understanding of the impact of multiple-joint occurrences of coincident errors. A theoretical basis for the study of redundant software is developed which provides a probabilistic framework for empirically evaluating the effectiveness of the general (N-Version) strategy when component versions are subject to coincident errors, and permits an analytical study of the effects of these errors. The basic assumptions of the model are: (1) independently designed software components are chosen in a random sample; and (2) in the user environment, the system is required to execute on a stationary input series. The intensity of coincident errors, has a central role in the model. This function describes the propensity to introduce design faults in such a way that software components fail together when executing in the user environment. The model is used to give conditions under which an N-Version system is a better strategy for reducing system failure probability than relying on a single version of software. A condition which limits the effectiveness of a fault-tolerant strategy is studied, and it is posted whether system failure probability varies monotonically with increasing N or whether an optimal choice of N exists
HUMAN RESOURCE POLICIES FOR NONMETROPOLITAN AMERICA
Labor and Human Capital,
Theoretical frameworks for testing relativistic gravity. 5: Post-Newtonian limit of Rosen's theory
The post-Newtonian limit of Rosen's theory of gravity is evaluated and is shown to be identical to that of general relativity, except for the PPN parameter alpha sub 2, which is related to the difference in propagation speeds for gravitational and electromagnetic waves. Both the value of alpha sub 2 and the value of the Newtonian gravitational constant depend on the present cosmological structure of the Universe. If the cosmological structure has a specific but presumably special form, the Newtonian gravitational constant assumes its current value, alpha sub 2 is zero, the post-Newtonian limit of Rosen's theory is identical to that of general relativity--and standard solar system experiments cannot distinguish between the two theories
Tracking analysis of a first order phase- locked loop with two sinewaves modulation
Phase locked-loop tracking with sine wave modulation in Apollo communication system
Grid generation strategies for turbomachinery configurations
Turbomachinery flow fields involve unique grid generation issues due to their geometrical and physical characteristics. Several strategic approaches are discussed to generate quality grids. The grid quality is further enhanced through blending and adapting. Grid blending smooths the grids locally through averaging and diffusion operators. Grid adaptation redistributes the grid points based on a grid quality assessment. These methods are demonstrated with several examples
Crossflow in two-dimensional asymmetric nozzles
An experimental investigation of the crossflow effects in three contoured, two-dimensional asymmetric nozzles is described. The data were compared with theoretical predictions of nozzle flow by using an inviscid method of characteristics solution and two-dimensional turbulent boundary-layer calculations. The effect of crossflow as a function of the nozzle maximum expansion angle was studied by use of oil-flow techniques, static wall-pressure measurements, and impact-pressure surveys at the nozzle exit. Reynolds number effects on crossflow were investigated
- …