243 research outputs found

    Phenomenology of single spin asymmetries in p(transv. polarized)-p -> pion + X

    Get PDF
    A phenomenological description of single transverse spin effects in hadron-hadron inclusive processes is proposed, assuming a generalized factorization scheme and pQCD hard interactions. The transverse momentum, k_T, of the quarks inside the hadrons and of the hadrons relatively to the fragmenting quark, is taken into account in distribution and fragmentation functions, and leads to possible non zero single spin asymmetries. The role of k_T and spin dependent quark fragmentations -- the so-called Collins effect -- is investigated in details in p(transv. polarized)-p -> pion + X processes: it is shown how the experimental data could be described, obtaining an explicit expression for the spin asymmetry of a polarized fragmenting quark, on which some comments are made. Predictions for other processes, possible further applications and experimental tests are discussed.Comment: 20+1 pages, LaTeX, 6 eps figures, uses epsfig.sty. Version v2: Some sentences rephrased and comments added throughout the paper; one reference added; no changes in results and figures. Final version to be published in Phys. Rev.

    Accessing Transversity in Double-Spin Asymmetries at the BNL-RHIC

    Get PDF
    We give upper bounds for transverse double-spin asymmetries in polarized proton-proton collisions by saturating the positivity constraint for the transversity densities at a low hadronic resolution scale. We consider prompt photon, jet, pion, and heavy flavor production at the BNL Relativistic Heavy Ion Collider (RHIC). Estimates of the expected statistical accuracy for such measurements are presented, taking into account the acceptance of the RHIC detectors.Comment: 15 pages, LaTeX, 2 figures as eps file

    Double transverse spin asymmetries in vector boson production

    Get PDF
    We investigate a helicity non-flip double transverse spin asymmetry in vector boson production in hadron-hadron scattering, which was first considered by Ralston and Soper at the tree level. It does not involve transversity functions and in principle also arises in W-boson production for which we present the expressions. The asymmetry requires observing the transverse momentum of the vector boson, but it is not suppressed by explicit inverse powers of a large energy scale. However, as we will show, inclusion of Sudakov factors causes suppression of the asymmetry, which increases with energy. Moreover, the asymmetry is shown to be approximately proportional to x_1 g_1(x_1) x_2 \bar g_1(x_2), which gives rise to additional suppression at small values of the light cone momentum fractions. This implies that it is negligible for Z or W production and is mainly of interest for \gamma^* at low energies. We also compare the asymmetry with other types of double transverse spin asymmetries and discuss how to disentangle them.Comment: 12 pages, Revtex, 2 Postscript figures, uses aps.sty, epsf.sty; figures replaced, a few minor other correction

    Updated Report Acceleration of Polarized Protons to 120-150 GeV/c at Fermilab

    Full text link
    The SPIN@FERMI collaboration has updated its 1991-95 Reports on the acceleration of polarized protons in Fermilab's Main Injector, which was commissioned by Fermilab. This Updated Report summarizes some updated Physics Goals for a 120-150 GeV/c polarized proton beam. It also contains an updated discussion of the Modifications and Hardware needed for a polarized beam in the Main Injector, along with an updated Schedule and Budget.Comment: 30 pages, 12 figure

    A mechanism for the T-odd pion fragmentation function

    Full text link
    We consider a simple rescattering mechanism to calculate a leading twist TT-odd pion fragmentation function, a favored candidate for filtering the transversity properties of the nucleon. We evaluate the single spin azimuthal asymmetry for a transversely polarized target in semi-inclusive deep inelastic scattering (for HERMES kinematics). Additionally, we calculate the double TT-odd cos2ϕ\cos2\phi asymmetry in this framework.Comment: 6 pages revtex, 7 eps figures, references added and updated in this published versio

    Spin-flipping a stored polarized proton beam with an rf dipole

    Full text link
    Frequent polarization reversals, or spin-flips, of a stored polarized high-energy beam may greatly reduce systematic errors of spin asymmetry measurements in a scattering asymmetry experiment. We studied the spin-flipping of a 120 MeV horizontally-polarized proton beam stored in the IUCF Cooler Ring by ramping an rf-dipole magnet’s frequency through an rf-induced depolarizing resonance in the presence of a nearly-full Siberian snake. After optimizing the frequency ramp parameters, we used multiple spin-flips to measure a spin-flip efficiency of 86.5±0.5%.86.5±0.5%. The spin-flip efficiency was apparently limited by the rf-dipole’s field strength. This result indicates that an efficient spin-flipping a stored polarized beam should be possible in high energy rings such as RHIC and HERA where Siberian snakes are certainly needed and only dipole rf-flipper-magnets are practical. © 2000 American Institute of Physics.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87561/2/662_1.pd

    In-medium Yang-Mills equations: a derivation and canonical quantization

    Full text link
    The equations for Yang-Mills field in a medium are derived in a linear approximation with respect to the gauge coupling parameter and the external field. The obtained equations closely resemble the macroscopic Maxwell equations. A canonical quantization is performed for a family of Fermi-like gauges in the case of constant and diagonal (in the group indices) tensors of electric permittivity and magnetic permeability. The physical subspace is defined and the gauge field propagator is evaluated for a particular choice of the gauge. The propagator is applied for evaluation of the cross-section of ellastic quark scattering in the Born approximation. Possible applications to Cherenkov-type gluon radiation are commented briefly.Comment: 27 pages, references added, version extended with emphasis on non-Abelian gauge group impact on medium characteristics. To appear in J. Phys.
    corecore