938 research outputs found

    ADADELTA: An Adaptive Learning Rate Method

    Full text link
    We present a novel per-dimension learning rate method for gradient descent called ADADELTA. The method dynamically adapts over time using only first order information and has minimal computational overhead beyond vanilla stochastic gradient descent. The method requires no manual tuning of a learning rate and appears robust to noisy gradient information, different model architecture choices, various data modalities and selection of hyperparameters. We show promising results compared to other methods on the MNIST digit classification task using a single machine and on a large scale voice dataset in a distributed cluster environment.Comment: 6 page

    Common-Law Disclosure Duties and the Sin of Omission: Testing the Meta-Theories

    Get PDF
    This Article represents the first attempt to study empirically the factors that cause courts to impose disclosure duties on bargaining parties in some circumstances, but not in others. We analyze data coded from 466 decisions spanning a wide array of jurisdictions and covering over two hundred years. The results are mixed. In some instances our data support the conventional wisdom relating to common-law disclosure duties. For example, we find that courts are more likely to require the disclosure of latent, as opposed to patent, defects and are more likely to require disclosure when the parties are in a fiduciary or confidential relationship. In other instances, our results cast doubt on much of the conventional wisdom regarding the law of fraudulent silence. First, although it is generally understood that courts have become more likely to impose disclosure duties over time, we find that courts actually have become less likely over time to impose duties to disclose. Second, and perhaps most importantly, we find that courts are no more likely to impose disclosure duties when the information is casually acquired as opposed to deliberately acquired, and that unequal access to information by the contracting parties is not a significant factor that drives courts to find a duty to disclose. We do find, however, that when both factors are present courts are significantly more likely to force disclosure

    Visualizing and Understanding Convolutional Networks

    Full text link
    Large Convolutional Network models have recently demonstrated impressive classification performance on the ImageNet benchmark. However there is no clear understanding of why they perform so well, or how they might be improved. In this paper we address both issues. We introduce a novel visualization technique that gives insight into the function of intermediate feature layers and the operation of the classifier. We also perform an ablation study to discover the performance contribution from different model layers. This enables us to find model architectures that outperform Krizhevsky \etal on the ImageNet classification benchmark. We show our ImageNet model generalizes well to other datasets: when the softmax classifier is retrained, it convincingly beats the current state-of-the-art results on Caltech-101 and Caltech-256 datasets

    Aeroelastic modeling for the FIT (Functional Integration Technology) team F/A-18 simulation

    Get PDF
    As part of Langley Research Center's commitment to developing multidisciplinary integration methods to improve aerospace systems, the Functional Integration Technology (FIT) team was established to perform dynamics integration research using an existing aircraft configuration, the F/A-18. An essential part of this effort has been the development of a comprehensive simulation modeling capability that includes structural, control, and propulsion dynamics as well as steady and unsteady aerodynamics. The structural and unsteady aerodynamics contributions come from an aeroelastic mode. Some details of the aeroelastic modeling done for the Functional Integration Technology (FIT) team research are presented. Particular attention is given to work done in the area of correction factors to unsteady aerodynamics data

    Aeroelastic modeling for the FIT team F/A-18 simulation

    Get PDF
    Some details of the aeroelastic modeling of the F/A-18 aircraft done for the Functional Integration Technology (FIT) team's research in integrated dynamics modeling and how these are combined with the FIT team's integrated dynamics model are described. Also described are mean axis corrections to elastic modes, the addition of nonlinear inertial coupling terms into the equations of motion, and the calculation of internal loads time histories using the integrated dynamics model in a batch simulation program. A video tape made of a loads time history animation was included as a part of the oral presentation. Also discussed is work done in one of the areas of unsteady aerodynamic modeling identified as needing improvement, specifically, in correction factor methodologies for improving the accuracy of stability derivatives calculated with a doublet lattice code

    Adaptive feature extraction: Exploring the search space with change detection using inductive learners and image processing

    Get PDF

    CS 111.01: Computer Literacy

    Get PDF

    Hierarchical ResNeXt Models for Breast Cancer Histology Image Classification

    Full text link
    Microscopic histology image analysis is a cornerstone in early detection of breast cancer. However these images are very large and manual analysis is error prone and very time consuming. Thus automating this process is in high demand. We proposed a hierarchical system of convolutional neural networks (CNN) that classifies automatically patches of these images into four pathologies: normal, benign, in situ carcinoma and invasive carcinoma. We evaluated our system on the BACH challenge dataset of image-wise classification and a small dataset that we used to extend it. Using a train/test split of 75%/25%, we achieved an accuracy rate of 0.99 on the test split for the BACH dataset and 0.96 on that of the extension. On the test of the BACH challenge, we've reached an accuracy of 0.81 which rank us to the 8th out of 51 teams

    Dipole: Diagnosis Prediction in Healthcare via Attention-based Bidirectional Recurrent Neural Networks

    Full text link
    Predicting the future health information of patients from the historical Electronic Health Records (EHR) is a core research task in the development of personalized healthcare. Patient EHR data consist of sequences of visits over time, where each visit contains multiple medical codes, including diagnosis, medication, and procedure codes. The most important challenges for this task are to model the temporality and high dimensionality of sequential EHR data and to interpret the prediction results. Existing work solves this problem by employing recurrent neural networks (RNNs) to model EHR data and utilizing simple attention mechanism to interpret the results. However, RNN-based approaches suffer from the problem that the performance of RNNs drops when the length of sequences is large, and the relationships between subsequent visits are ignored by current RNN-based approaches. To address these issues, we propose {\sf Dipole}, an end-to-end, simple and robust model for predicting patients' future health information. Dipole employs bidirectional recurrent neural networks to remember all the information of both the past visits and the future visits, and it introduces three attention mechanisms to measure the relationships of different visits for the prediction. With the attention mechanisms, Dipole can interpret the prediction results effectively. Dipole also allows us to interpret the learned medical code representations which are confirmed positively by medical experts. Experimental results on two real world EHR datasets show that the proposed Dipole can significantly improve the prediction accuracy compared with the state-of-the-art diagnosis prediction approaches and provide clinically meaningful interpretation
    corecore