6,079 research outputs found
Addendum to "Coherent radio pulses from GEANT generated electromagnetic showers in ice"
We reevaluate our published calculations of electromagnetic showers generated
by GEANT 3.21 and the radio frequency pulses they produce in ice. We are
prompted by a recent report showing that GEANT 3.21-modeled showers are
sensitive to internal settings in the electron tracking subroutine. We report
the shower and pulse characteristics obtained with different settings of GEANT
3.21 and with GEANT 4. The default setting of electron tracking in GEANT 3.21
we used in previous work speeds up the shower simulation at the cost of
information near the end of the tracks. We find that settings tracking electron
and positron to lower energy yield a more accurate calculation, a more intense
shower, and proportionately stronger radio pulses at low frequencies. At high
frequencies the relation between shower tracking algorithm and pulse spectrum
is more complex. We obtain radial distributions of shower particles and phase
distributions of pulses from 100 GeV showers that are consistent with our
published results.Comment: 4 pages, 3 figure
Relativistic Magnetic Monopole Flux Constraints from RICE
We report an upper limit on the flux of relativistic monopoles based on the
non-observation of in-ice showers by the Radio Ice Cherenkov Experiment (RICE)
at the South Pole. We obtain a 95% C.L. limit of order 10^{-18}/(cm^2-s-sr) for
intermediate mass monopoles of 10^7<gamma<10^{12} at the anticipated energy
E=10^{16} GeV. This bound is over an order of magnitude stronger than all
previously published experimental limits for this range of boost parameters
gamma, and exceeds two orders of magnitude improvement over most of the range.
We review the physics of radio detection, describe a Monte Carlo simulation
including continuous and stochastic energy losses, and compare to previous
experimental limits.Comment: 16 pages, 6 figures. Accepted for publication in Phys. Rev. D. Minor
revisions, including expanded discussion of monopole energy uncertaint
Search for neutrinos from decaying dark matter with IceCube
This work is licensed under a Creative Commons Attribution 4.0 International License.With the observation of high-energy astrophysical neutrinos by the IceCube Neutrino Observatory, interest has risen in models of PeV-mass decaying dark matter particles to explain the observed flux. We present two dedicated experimental analyses to test this hypothesis. One analysis uses 6 years of IceCube data focusing on muon neutrino ‘track’ events from the Northern Hemisphere, while the second analysis uses 2 years of ‘cascade’ events from the full sky. Known background components and the hypothetical flux from unstable dark matter are fitted to the experimental data. Since no significant excess is observed in either analysis, lower limits on the lifetime of dark matter particles are derived: we obtain the strongest constraint to date, excluding lifetimes shorter than 10^28 s at 90% CL for dark matter masses above 10 TeV
RICE Limits on the Diffuse Ultra-High Energy Neutrino Flux
We present new limits on ultra-high energy neutrino fluxes above 100 PeV
based on data collected by the Radio Ice Cherenkov Experiment (RICE) at the
South Pole from 1999-2005. We discuss estimation of backgrounds, calibration
and data analysis algorithms (both on-line and off-line), procedures used for
the dedicated neutrino search, and refinements in our Monte Carlo (MC)
simulation, including recent in situ measurements of the complex ice dielectric
constant. An enlarged data set and a more detailed study of hadronic showers
results in a sensitivity improvement of more than one order of magnitude
compared to our previously published results. Examination of the full RICE data
set yields zero acceptable neutrino candidates, resulting in 95%
confidence-level model dependent limits on the flux
(E_\nu)^2(d\phi/dE_\nu)<10^{-6} GeV/(cm^2s~sr}) in the energy range 10^{17}<
E_\nu< 10^{20} eV. The new RICE results rule out the most intense flux model
projections at 95% confidence level.Comment: Submitted to Astropart. Phy
- …
