2,155 research outputs found

    New and Old Results in Resultant Theory

    Full text link
    Resultants are getting increasingly important in modern theoretical physics: they appear whenever one deals with non-linear (polynomial) equations, with non-quadratic forms or with non-Gaussian integrals. Being a subject of more than three-hundred-year research, resultants are of course rather well studied: a lot of explicit formulas, beautiful properties and intriguing relationships are known in this field. We present a brief overview of these results, including both recent and already classical. Emphasis is made on explicit formulas for resultants, which could be practically useful in a future physics research.Comment: 50 pages, 15 figure

    Transport of Molecular Motor Dimers in Burnt-Bridge Models

    Full text link
    Dynamics of molecular motor dimers, consisting of rigidly bound particles that move along two parallel lattices and interact with underlying molecular tracks, is investigated theoretically by analyzing discrete-state stochastic continuous-time burnt-bridge models. In these models the motion of molecular motors is viewed as a random walk along the lattices with periodically distributed weak links (bridges). When the particle crosses the weak link it can be destroyed with a probability pp, driving the molecular motor motion in one direction. Dynamic properties and effective generated forces of dimer molecular motors are calculated exactly as a function of a concentration of bridges cc and burning probability pp and compared with properties of the monomer motors. It is found that the ratio of the velocities of the dimer and the monomer can never exceed 2, while the dispersions of the dimer and the monomer are not very different. The relative effective generated force of the dimer (as compared to the monomer) also cannot be larger than 2 for most sets of parameters. However, a very large force can be produced by the dimer in the special case of c=1/2c=1/2 for non-zero shift between the lattices. Our calculations do not show the significant increase in the force generated by collagenase motor proteins in real biological systems as predicted by previous computational studies. The observed behavior of dimer molecular motors is discussed by considering in detail the particle dynamics near burnt bridges.Comment: 21 pages and 11 figure

    Dynamical lattice instability versus spin liquid state in a frustrated spin chain system

    Full text link
    The low-dimensional s=1/2 compound (NO)[Cu(NO3)3] has recently been suggested to follow the Nersesyan-Tsvelik model of coupled spin chains. Such a system shows unbound spinon excitations and a resonating valence bond ground state due spin frustration. Our Raman scattering study demonstrates phonon anomalies as well as the suppression of a broad magnetic scattering continuum for temperatures below a characteristic temperature, T<T*=100K. We interpret these effects as evidence for a dynamical interplay of spin and lattice degrees of freedom that might lead to a further transition into a dimerized or structurally distorted phase at lower temperatures.Comment: 5 pages, 6 figure

    Dynamic Properties of Molecular Motors in Burnt-Bridge Models

    Full text link
    Dynamic properties of molecular motors that fuel their motion by actively interacting with underlying molecular tracks are studied theoretically via discrete-state stochastic ``burnt-bridge'' models. The transport of the particles is viewed as an effective diffusion along one-dimensional lattices with periodically distributed weak links. When an unbiased random walker passes the weak link it can be destroyed (``burned'') with probability p, providing a bias in the motion of the molecular motor. A new theoretical approach that allows one to calculate exactly all dynamic properties of motor proteins, such as velocity and dispersion, at general conditions is presented. It is found that dispersion is a decreasing function of the concentration of bridges, while the dependence of dispersion on the burning probability is more complex. Our calculations also show a gap in dispersion for very low concentrations of weak links which indicates a dynamic phase transition between unbiased and biased diffusion regimes. Theoretical findings are supported by Monte Carlo computer simulations.Comment: 14 pages. Submitted to J. Stat. Mec

    M-Theory of Matrix Models

    Full text link
    Small M-theories unify various models of a given family in the same way as the M-theory unifies a variety of superstring models. We consider this idea in application to the family of eigenvalue matrix models: their M-theory unifies various branches of Hermitean matrix model (including Dijkgraaf-Vafa partition functions) with Kontsevich tau-function. Moreover, the corresponding duality relations look like direct analogues of instanton and meron decompositions, familiar from Yang-Mills theory.Comment: 12 pages, contribution to the Proceedings of the Workshop "Classical and Quantum Integrable Systems", Protvino, Russia, January, 200

    Strong-coupling effects in the relaxation dynamics of ultracold neutral plasmas

    Full text link
    We describe a hybrid molecular dynamics approach for the description of ultracold neutral plasmas, based on an adiabatic treatment of the electron gas and a full molecular dynamics simulation of the ions, which allows us to follow the long-time evolution of the plasma including the effect of the strongly coupled ion motion. The plasma shows a rather complex relaxation behavior, connected with temporal as well as spatial oscillations of the ion temperature. Furthermore, additional laser cooling of the ions during the plasma evolution drastically modifies the expansion dynamics, so that crystallization of the ion component can occur in this nonequilibrium system, leading to lattice-like structures or even long-range order resulting in concentric shells
    • …
    corecore