16,592 research outputs found
The conductance of a multi-mode ballistic ring: beyond Landauer and Kubo
The Landauer conductance of a two terminal device equals to the number of
open modes in the weak scattering limit. What is the corresponding result if we
close the system into a ring? Is it still bounded by the number of open modes?
Or is it unbounded as in the semi-classical (Drude) analysis? It turns out that
the calculation of the mesoscopic conductance is similar to solving a
percolation problem. The "percolation" is in energy space rather than in real
space. The non-universal structures and the sparsity of the perturbation matrix
cannot be ignored.Comment: 7 pages, 8 figures, with the correct version of Figs.6-
Rate of energy absorption by a closed ballistic ring
We make a distinction between the spectroscopic and the mesoscopic
conductance of closed systems. We show that the latter is not simply related to
the Landauer conductance of the corresponding open system. A new ingredient in
the theory is related to the non-universal structure of the perturbation matrix
which is generic for quantum chaotic systems. These structures may created
bottlenecks that suppress the diffusion in energy space, and hence the rate of
energy absorption. The resulting effect is not merely quantitative: For a
ring-dot system we find that a smaller Landauer conductance implies a smaller
spectroscopic conductance, while the mesoscopic conductance increases. Our
considerations open the way towards a realistic theory of dissipation in closed
mesoscopic ballistic devices.Comment: 18 pages, 5 figures, published version with updated ref
Lattice Model of Sweeping Interface for Drying Process in Water-Granule Mixture
Based on the invasion percolation model, a lattice model for the sweeping
interface dynamics is constructed to describe the pattern forming process by a
sweeping interface upon drying the water-granule mixture. The model is shown to
produce labyrinthine patterns similar to those found in the experiment[Yamazaki
and Mizuguchi, J. Phys. Soc. Jpn. \textbf{69} (2000) 2387]. Upon changing the
initial granular density, resulting patterns undergo the percolation
transition, but estimated critical exponents are different from those of the
conventional percolation. Loopless structure of clusters in the patterns
produced by the sweeping dynamics seems to influence the nature of the
transition.Comment: 6 pages, 7 figure
Quantal Brownian Motion - Dephasing and Dissipation
We analyze quantal Brownian motion in dimensions using the unified model
for diffusion localization and dissipation, and Feynman-Vernon formalism. At
high temperatures the propagator possess a Markovian property and we can write
down an equivalent Master equation. Unlike the case of the
Zwanzig-Caldeira-Leggett model, genuine quantum mechanical effects manifest
themselves due to the disordered nature of the environment. Using Wigner
picture of the dynamics we distinguish between two different mechanisms for
destruction of coherence. The analysis of dephasing is extended to the low
temperature regime by using a semiclassical strategy. Various results are
derived for ballistic, chaotic, diffusive, both ergodic and non-ergodic motion.
We also analyze loss of coherence at the limit of zero temperature and clarify
the limitations of the semiclassical approach. The condition for having
coherent effect due to scattering by low-frequency fluctuations is also pointed
out. It is interesting that the dephasing rate can be either larger or smaller
than the dissipation rate, depending on the physical circumstances.Comment: LaTex, 23 pages, 4 figures, published vesio
Recommended from our members
Cost-optimized heterogeneous FPGA architecture for non-iterative hologram generation.
The generation of computer-generated holograms (CGHs) requires a significant amount of computational power. To accelerate the process, highly parallel field-programmable gate arrays (FPGAs) are deemed to be a promising computing platform to implement non-iterative hologram generation algorithms. In this paper, we present a cost-optimized heterogeneous FPGA architecture based on a one-step phase retrieval algorithm for CGH generation. The results indicate that our hardware implementation is 2.5× faster than the equivalent software implementation on a personal computer with a high-end multi-core CPU. Trade-offs between cost and performance are demonstrated, and we show that the proposed heterogeneous architecture can be used in a compact display system that is cost and size optimized
Gaussian-weighted moving-window robust automatic threshold selection
A multi-scale, moving-window method for local thresholding based on Robust Automatic Threshold Selection (RATS) is developed. Using a model for the noise response of the optimal edge detector in this context, the reliability of thresholds computed at different scales is determined. The threshold computed at the smallest scale at which the reliability is suffcient is used. The performance on 2-D images is evaluated on synthetic an natural images in the presence of varying background and noise. Results show the method deals better with these problems than earlier versions of RATS at most noise levels
Quantum-Mechanical Non-Perturbative Response of Driven Chaotic Mesoscopic Systems
Consider a time-dependent Hamiltonian with periodic driving
. It is assumed that the classical dynamics is chaotic,
and that its power-spectrum extends over some frequency range
. Both classical and quantum-mechanical (QM) linear
response theory (LRT) predict a relatively large response for
, and a relatively small response otherwise, independently
of the driving amplitude . We define a non-perturbative regime in the
space, where LRT fails, and demonstrate this failure numerically.
For , where , the system may have a relatively
strong response for , and the shape of the response
function becomes dependent.Comment: 4 pages, 2 figures, revised version with much better introductio
Optical properties of Si/Si0.87Ge0.13 multiple quantum well wires
Nanometer-scale wires cut into a Si/Si0.87Ge0.13 multiple quantum well structure were fabricated and characterized by using photoluminescence and photoreflectance at temperatures between 4 and 20 K. It was found that, in addition to a low-energy broadband emission at around 0.8 eV and other features normally observable in photoluminescence measurements, fabrication process induced strain relaxation and enhanced electron-hole droplets emission together with a new feature at 1.131 eV at 4 K were observed. The latter was further identified as a transition related to impurities located at the Si/Si0.87Ge0.13 heterointerfaces
Effects of Electron Correlations on Hofstadter Spectrum
By allowing interactions between electrons, a new Harper's equation is
derived to examine the effects of electron correlations on the Hofstadter
energy spectra. It is shown that the structure of the Hofstadter butterfly ofr
the system of correlated electrons is modified only in the band gaps and the
band widths, but not in the characteristics of self-similarity and the Cantor
set.Comment: 13 pages, 5 Postscript figure
- …