32,715 research outputs found

    Corrigendum to "Knot Floer homology detects fibred knots"

    Full text link
    We correct a mistake on the citation of JSJ theory in \cite{Ni}. Some arguments in \cite{Ni} are also slightly modified accordingly.Comment: 3 page

    The definability criterions for convex projective polyhedral reflection groups

    Full text link
    Following Vinberg, we find the criterions for a subgroup generated by reflections \Gamma \subset \SL^{\pm}(n+1,\mathbb{R}) and its finite-index subgroups to be definable over A\mathbb{A} where A\mathbb{A} is an integrally closed Noetherian ring in the field R\mathbb{R}. We apply the criterions for groups generated by reflections that act cocompactly on irreducible properly convex open subdomains of the nn-dimensional projective sphere. This gives a method for constructing injective group homomorphisms from such Coxeter groups to \SL^{\pm}(n+1,\mathbb{Z}). Finally we provide some examples of \SL^{\pm}(n+1,\mathbb{Z})-representations of such Coxeter groups. In particular, we consider simplicial reflection groups that are isomorphic to hyperbolic simplicial groups and classify all the conjugacy classes of the reflection subgroups in \SL^{\pm}(n+1,\mathbb{R}) that are definable over Z\mathbb{Z}. These were known by Goldman, Benoist, and so on previously.Comment: 31 pages, 8 figure

    Initial Time Singularities in Non-Equilibrium Evolution of Condensates and Their Resolution in the Linearized Approximation

    Full text link
    The real time non-equilibrium evolution of condensates in field theory requires an initial value problem specifying an initial quantum state or density matrix. Arbitrary specifications of the initial quantum state (pure or mixed) results in initial time singularities which are not removed by the usual renormalization counterterms. We study the initial time singularities in the linearized equation of motion for the scalar condensate in a renormalizable Yukawa theory in 3+1 dimensions. In this renormalizable theory the initial time singularities are enhanced. We present a consistent method for removing these initial time singularities by specifying initial states where the distribution of high energy quanta is determined by the initial conditions and the interaction effects. This is done through a Bogoliubov transformation which is consistently obtained in a perturbative expansion.The usual renormalization counterterms and the proper choice of the Bogoliubov coefficients lead to a singularity free evolution equation. We establish the relationship between the evolution equations in the linearized approximation and linear response theory. It is found that only a very specific form of the external source for linear response leads to a real time evolution equation which is singularity free. We focus on the evolution of spatially inhomogeneous scalar condensates by implementing the initial state preparation via a Bogoliubov transformation up to one-loop. As a concrete application, the evolution equation for an inhomogenous condensate is solved analytically and the results are carefully analyzed. Symmetry breaking by initial quantum states is discussed.Comment: LaTex, 26 pages, 2 .ps figure

    Diamagnetism and flux creep in bilayer exciton superfluids

    Full text link
    We discuss the diamagnetism induced in an isolated quantum Hall bilayer with total filling factor one by an in-plane magnetic field. This is a signature of counterflow superfluidity in these systems. We calculate magnetically induced currents in the presence of pinned vortices nucleated by charge disorder, and predict a history-dependent diamagnetism that could persist on laboratory timescales. For current samples we find that the maximum in-plane moment is small, but with stronger tunneling the moments would be measurable using torque magnetometry. Such experiments would allow the persistent currents of a counterflow superfluid to be observed in an electrically isolated bilayer.Comment: 8 pages, 2 figures. v2: updated to accepted version, extended presentatio

    Resumming the large-N approximation for time evolving quantum systems

    Get PDF
    In this paper we discuss two methods of resumming the leading and next to leading order in 1/N diagrams for the quartic O(N) model. These two approaches have the property that they preserve both boundedness and positivity for expectation values of operators in our numerical simulations. These approximations can be understood either in terms of a truncation to the infinitely coupled Schwinger-Dyson hierarchy of equations, or by choosing a particular two-particle irreducible vacuum energy graph in the effective action of the Cornwall-Jackiw-Tomboulis formalism. We confine our discussion to the case of quantum mechanics where the Lagrangian is L(x,x˙)=(1/2)i=1Nx˙i2(g/8N)[i=1Nxi2r02]2L(x,\dot{x}) = (1/2) \sum_{i=1}^{N} \dot{x}_i^2 - (g/8N) [ \sum_{i=1}^{N} x_i^2 - r_0^2 ]^{2}. The key to these approximations is to treat both the xx propagator and the x2x^2 propagator on similar footing which leads to a theory whose graphs have the same topology as QED with the x2x^2 propagator playing the role of the photon. The bare vertex approximation is obtained by replacing the exact vertex function by the bare one in the exact Schwinger-Dyson equations for the one and two point functions. The second approximation, which we call the dynamic Debye screening approximation, makes the further approximation of replacing the exact x2x^2 propagator by its value at leading order in the 1/N expansion. These two approximations are compared with exact numerical simulations for the quantum roll problem. The bare vertex approximation captures the physics at large and modest NN better than the dynamic Debye screening approximation.Comment: 30 pages, 12 figures. The color version of a few figures are separately liste

    From fields to a super-cluster: the role of the environment at z=0.84 with HiZELS

    Full text link
    At z=0, clusters are primarily populated by red, elliptical and massive galaxies, while blue, spiral and lower-mass galaxies are common in low-density environments. Understanding how and when these differences were established is of absolute importance for our understanding of galaxy formation and evolution, but results at high-z remain contradictory. By taking advantage of the widest and deepest H-alpha narrow-band survey at z=0.84 over the COSMOS and UKIDSS UDS fields, probing a wide range of densities (from poor fields to rich groups and clusters, including a confirmed super-cluster with a striking filamentary structure), we show that the fraction of star-forming galaxies falls continuously from ~40% in fields to approaching 0% in rich groups/clusters. We also find that the median SFR increases with environmental density, at least up to group densities - but only for low and medium mass galaxies, and thus such enhancement is mass-dependent at z~1. The environment also plays a role in setting the faint-end slope (alpha) of the H-alpha luminosity function. Our findings provide a sharper view on galaxy formation and evolution and reconcile previously contradictory results at z~1: stellar mass is the primary predictor of star formation activity, but the environment also plays a major role.Comment: 5 pages, 4 figures, to appear in the proceedings of JENAM 2010 S2: `Environment and the Formation of Galaxies: 30 years later', ASSP, Springe

    Particle Production and Effective Thermalization in Inhomogeneous Mean Field Theory

    Get PDF
    As a toy model for dynamics in nonequilibrium quantum field theory we consider the abelian Higgs model in 1+1 dimensions with fermions. In the approximate dynamical equations, inhomogeneous classical (mean) Bose fields are coupled to quantized fermion fields, which are treated with a mode function expansion. The effective equations of motion imply e.g. Coulomb scattering, due to the inhomogeneous gauge field. The equations are solved numerically. We define time dependent fermion particle numbers with the help of the single-time Wigner function and study particle production starting from inhomogeneous initial conditions. The particle numbers are compared with the Fermi-Dirac distribution parametrized by a time dependent temperature and chemical potential. We find that the fermions approximately thermalize locally in time.Comment: 16 pages + 6 eps figures, some clarifications and two references added, typos corrected; to appear in Phys.Rev.

    Equilibrium and nonequilibrium properties associated with the chiral phase transition at finite density in the Gross-Neveu Model

    Get PDF
    We study the dynamics of the chiral phase transition at finite density in the Gross-Neveu (GN) model in the leading order in large-N approximation. The phase structure of the GN model in this approximation has the property that there is a tricritical point at a fixed temperature and chemical potential separating regions where the chiral transition is first order from that where it is second order. We consider evolutions starting in local thermal and chemical equilibrium in the massless unbroken phase for conditions pertaining to traversing a first or second order phase transition. We assume boost invariant kinematics and determine the evolution of the order parameter σ\sigma, the energy density and pressure as well as the effective temperature, chemical potential and interpolating number densities as a function of the proper time τ\tau. We find that before the phase transition, the system behaves as if it were an ideal fluid in local thermal equilibrium with equation of state p=ϵp=\epsilon. After the phase transition, the system quickly reaches its true broken symmetry vacuum value for the fermion mass and for the energy density. The single particle distribution functions for Fermions and anti-Fermions go far out of equilibrium as soon as the plasma traverses the chiral phase transition. We have also determined the spatial dependence of the "pion" Green's function <ψˉ(x)γ5ψ(x)ψˉ(0)γ5ψ(0)><\bar{\psi}(x) \gamma_5 \psi(x) \bar{\psi}(0) \gamma_5 \psi(0)> as a function of the proper time.Comment: 39 pages, 23 figure

    Non-Equilibrium Large N Yukawa Dynamics: marching through the Landau pole

    Get PDF
    The non-equilibrium dynamics of a Yukawa theory with N fermions coupled to a scalar field is studied in the large N limit with the goal of comparing the dynamics predicted from the renormalization group improved effective potential to that obtained including the fermionic backreaction. The effective potential is of the Coleman-Weinberg type. Its renormalization group improvement is unbounded from below and features a Landau pole. When viewed self-consistently, the initial time singularity does not arise. The different regimes of the dynamics of the fully renormalized theory are studied both analytically and numerically. Despite the existence of a Landau pole in the model, the dynamics of the mean field is smooth as it passes the location of the pole. This is a consequence of a remarkable cancellation between the effective potential and the dynamical chiral condensate. The asymptotic evolution is effectively described by a quartic upright effective potential. In all regimes, profuse particle production results in the formation of a dense fermionic plasma with occupation numbers nearly saturated up to a scale of the order of the mean field. This can be interpreted as a chemical potential. We discuss the implications of these results for cosmological preheating.Comment: 36 pages, 14 figures, LaTeX, submitted to Physical Review

    Chaos in Time Dependent Variational Approximations to Quantum Dynamics

    Full text link
    Dynamical chaos has recently been shown to exist in the Gaussian approximation in quantum mechanics and in the self-consistent mean field approach to studying the dynamics of quantum fields. In this study, we first show that any variational approximation to the dynamics of a quantum system based on the Dirac action principle leads to a classical Hamiltonian dynamics for the variational parameters. Since this Hamiltonian is generically nonlinear and nonintegrable, the dynamics thus generated can be chaotic, in distinction to the exact quantum evolution. We then restrict attention to a system of two biquadratically coupled quantum oscillators and study two variational schemes, the leading order large N (four canonical variables) and Hartree (six canonical variables) approximations. The chaos seen in the approximate dynamics is an artifact of the approximations: this is demonstrated by the fact that its onset occurs on the same characteristic time scale as the breakdown of the approximations when compared to numerical solutions of the time-dependent Schrodinger equation.Comment: 10 pages (12 figures), RevTeX (plus macro), uses epsf, minor typos correcte
    corecore