6,550 research outputs found
Effects of the liquid-gas phase transition and cluster formation on the symmetry energy
Various definitions of the symmetry energy are introduced for nuclei, dilute
nuclear matter below saturation density and stellar matter, which is found in
compact stars or core-collapse supernovae. The resulting differences are
exemplified by calculations in a theoretical approach based on a generalized
relativistic density functional for dense matter. It contains nucleonic
clusters as explicit degrees of freedom with medium dependent properties that
are derived for light clusters from a quantum statistical approach. With such a
model the dissolution of clusters at high densities can be described. The
effects of the liquid-gas phase transition in nuclear matter and of cluster
formation in stellar matter on the density dependence of the symmetry energy
are studied for different temperatures. It is observed that correlations and
the formation of inhomogeneous matter at low densities and temperatures causes
an increase of the symmetry energy as compared to calculations assuming a
uniform uncorrelated spatial distribution of constituent baryons and leptons.Comment: 20 pages, 19 figures, version accepted for publication in EPJA
special volume on Nuclear Symmetry Energ
The combined approach to ontology-based data access
The use of ontologies for accessing data is one of
the most exciting new applications of description
logics in databases and other information systems.
A realistic way of realising sufficiently scalable ontology-
based data access in practice is by reduction
to querying relational databases. In this paper,
we describe the combined approach, which incorporates
the information given by the ontology into
the data and employs query rewriting to eliminate
spurious answers. We illustrate this approach for
ontologies given in the DL-Lite family of description
logics and briefly discuss the results obtained
for the EL family
Combining Spatial and Temporal Logics: Expressiveness vs. Complexity
In this paper, we construct and investigate a hierarchy of spatio-temporal
formalisms that result from various combinations of propositional spatial and
temporal logics such as the propositional temporal logic PTL, the spatial
logics RCC-8, BRCC-8, S4u and their fragments. The obtained results give a
clear picture of the trade-off between expressiveness and computational
realisability within the hierarchy. We demonstrate how different combining
principles as well as spatial and temporal primitives can produce NP-, PSPACE-,
EXPSPACE-, 2EXPSPACE-complete, and even undecidable spatio-temporal logics out
of components that are at most NP- or PSPACE-complete
Combined FO rewritability for conjunctive query answering in DL-Lite
Standard description logic (DL) reasoning services such as satisfiability and subsumption mainly aim to support TBox design. When the design stage is over and the TBox is used in an actual application, it is usually combined with instance data stored in an ABox, and therefore query answering becomes the most importan
Mechanisms for Direct Breakup Reactions
We review some simple mechanisms of breakup in nuclear reactions. We mention
the spectator breakup, which is described in the post-form DWBA. The relation
to other formulations is also indicated. An especially important mechanism is
Coulomb dissociation. It is a distinct advantage that the perturbation due to
the electric field of the nucleus is exactly known. Therefore firm conclusions
can be drawn from such measurements. Some new applications of Coulomb
dissociation for nuclear astrophysics are discussed.Comment: 17 pages, 5 figures, to appear in the proceedings of the RCNP-TMU
Symposium on Spins in Nuclear and Hadronic Reactions, October 16-18 199
Composition and thermodynamics of nuclear matter with light clusters
We investigate nuclear matter at finite temperature and density, including
the formation of light clusters up to the alpha particle The novel feature of
this work is to include the formation of clusters as well as their dissolution
due to medium effects in a systematic way using two many-body theories: a
microscopic quantum statistical (QS) approach and a generalized relativistic
mean field (RMF) model. Nucleons and clusters are modified by medium effects.
Both approaches reproduce the limiting cases of nuclear statistical equilibrium
(NSE) at low densities and cluster-free nuclear matter at high densities. The
treatment of the cluster dissociation is based on the Mott effect due to Pauli
blocking, implemented in slightly different ways in the QS and the generalized
RMF approaches. We compare the numerical results of these models for cluster
abundances and thermodynamics in the region of medium excitation energies with
temperatures T <= 20 MeV and baryon number densities from zero to a few times
saturation density. The effect of cluster formation on the liquid-gas phase
transition and on the density dependence of the symmetry energy is studied.
Comparison is made with other theoretical approaches, in particular those,
which are commonly used in astrophysical calculations. The results are relevant
for heavy-ion collisions and astrophysical applications.Comment: 32 pages, 15 figures, minor corrections, accepted for publication in
Physical Review
Spectral observations of X Persei: Connection between H-alpha and X-ray emission
We present spectroscopic observations of the Be/X-ray binary X Per obtained
during the period 1999 - 2018. Using new and published data, we found that
during "disc-rise" the expansion velocity of the circumstellar disc is 0.4 -
0.7 km/s. Our results suggest that the disc radius in recent decades show
evidence of resonant truncation of the disc by resonances 10:1, 3:1, and 2:1,
while the maximum disc size is larger than the Roche lobe of the primary and
smaller than the closest approach of the neutron star. We find correlation
between equivalent width of H-alpha emission line () and the X-ray
flux, which is visible when . The
correlation is probably due to wind Roche lobe overflow.Comment: Accepted for publication in Astronomy & Astrophysic
Qualitative reasoning with directional relations
AbstractQualitative spatial reasoning (QSR) pursues a symbolic approach to reasoning about a spatial domain. Qualitative calculi are defined to capture domain properties in relation operations, granting a relation algebraic approach to reasoning. QSR has two primary goals: providing a symbolic model for human common-sense level of reasoning and providing efficient means for reasoning. In this paper, we dismantle the hope for efficient reasoning about directional information in infinite spatial domains by showing that it is inherently hard to decide consistency of a set of constraints that represents positions in the plane by specifying directions from reference objects. We assume that these reference objects are not fixed but only constrained through directional relations themselves. Known QSR reasoning methods fail to handle this information
- …