29,013 research outputs found

    Mass Hierarchy Resolution in Reactor Anti-neutrino Experiments: Parameter Degeneracies and Detector Energy Response

    Get PDF
    Determination of the neutrino mass hierarchy using a reactor neutrino experiment at ∼\sim60 km is analyzed. Such a measurement is challenging due to the finite detector resolution, the absolute energy scale calibration, as well as the degeneracies caused by current experimental uncertainty of ∣Δm322∣|\Delta m^2_{32}|. The standard χ2\chi^2 method is compared with a proposed Fourier transformation method. In addition, we show that for such a measurement to succeed, one must understand the non-linearity of the detector energy scale at the level of a few tenths of percent.Comment: 7 pages, 6 figures, accepted by PR

    Axisymmetric Self-Similar Equilibria of Self-Gravitating Isothermal Systems

    Get PDF
    All axisymmetric self-similar equilibria of self-gravitating, rotating, isothermal systems are identified by solving the nonlinear Poisson equation analytically. There are two families of equilibria: (1) Cylindrically symmetric solutions in which the density varies with cylindrical radius as R^(-alpha), with 0 <= alpha <= 2. (2) Axially symmetric solutions in which the density varies as f(theta)/r^2, where `r' is the spherical radius and `theta' is the co-latitude. The singular isothermal sphere is a special case of the latter class with f(theta)=constant. The axially symmetric equilibrium configurations form a two-parameter family of solutions and include equilibria which are surprisingly asymmetric with respect to the equatorial plane. The asymmetric equilibria are, however, not force-free at the singular points r=0, infinity, and their relevance to real systems is unclear. For each hydrodynamic equilibrium, we determine the phase-space distribution of the collisionless analog.Comment: 13 pages, 7 figures, uses emulateapj.sty. Submitted to Ap

    Semimetal to semimetal charge density wave transition in 1T-TiSe2_2

    Get PDF
    We report an infrared study on 1TT-TiSe2_2, the parent compound of the newly discovered superconductor Cux_xTiSe2_2. Previous studies of this compound have not conclusively resolved whether it is a semimetal or a semiconductor: information that is important in determining the origin of its unconventional CDW transition. Here we present optical spectroscopy results that clearly reveal that the compound is metallic in both the high-temperature normal phase and the low-temperature CDW phase. The carrier scattering rate is dramatically different in the normal and CDW phases and the carrier density is found to change with temperature. We conclude that the observed properties can be explained within the scenario of an Overhauser-type CDW mechanism.Comment: 4 pages, 4 page

    Prompt Iron Enrichment, Two r-Process Components, and Abundances in Very Metal-Poor Stars

    Get PDF
    We present a model to explain the wide range of abundances for heavy r-process elements (mass number A > 130) at low [Fe/H]. This model requires rapid star formation and/or an initial population of supermassive stars in the earliest condensed clots of matter to provide a prompt or initial Fe inventory. Subsequent Fe and r-process enrichment was provided by two types of supernovae: one producing heavy r-elements with no Fe on a rather short timescale and the other producing light r-elements (A < or = 130) with Fe on a much longer timescale.Comment: 5 pages, 2 postscript figures, to appear in ApJ

    SS Ari: a shallow-contact close binary system

    Full text link
    Two CCD epochs of light minimum and a complete R light curve of SS Ari are presented. The light curve obtained in 2007 was analyzed with the 2003 version of the W-D code. It is shown that SS Ari is a shallow contact binary system with a mass ratio q=3.25q=3.25 and a degree of contact factor f=9.4(\pm0.8%). A period investigation based on all available data shows that there may exist two distinct solutions about the assumed third body. One, assuming eccentric orbit of the third body and constant orbital period of the eclipsing pair results in a massive third body with M3=1.73M⊙M_3=1.73M_{\odot} and P_3=87.0yr.Onthecontrary,assumingcontinuousperiodchangesoftheeclipsingpairtheorbitalperiodoftertiaryis37.75yranditsmassisaboutyr. On the contrary, assuming continuous period changes of the eclipsing pair the orbital period of tertiary is 37.75yr and its mass is about 0.278M_{\odot}$. Both of the cases suggest the presence of an unseen third component in the system.Comment: 28 pages, 9 figures and 5 table

    Anomalous metallic state of Cu0.07_{0.07}TiSe2_2: an optical spectroscopy study

    Get PDF
    We report an optical spectroscopy study on the newly discovered superconductor Cu0.07_{0.07}TiSe2_2. Consistent with the development from a semimetal or semiconductor with a very small indirect energy gap upon doping TiSe2_2, it is found that the compound has a low carrier density. Most remarkably, the study reveals a substantial shift of the "screened" plasma edge in reflectance towards high energy with decreasing temperature. This phenomenon, rarely seen in metals, indicates either a sizeable increase of the conducting carrier concentration or/and a decrease of the effective mass of carriers with reducing temperature. We attribute the shift primarily to the later effect.Comment: 4 figures, 4+ page

    Non-local means based Rician noise filtering for diffusion tensor and kurtosis imaging in human brain and spinal cord

    Get PDF
    Background: To investigate the effect of using a Rician nonlocal means (NLM) filter on quantification of diffusion tensor (DT)- and diffusion kurtosis (DK)-derived metrics in various anatomical regions of the human brain and the spinal cord, when combined with a constrained linear least squares (CLLS) approach. / Methods: Prospective brain data from 9 healthy subjects and retrospective spinal cord data from 5 healthy subjects from a 3 T MRI scanner were included in the study. Prior to tensor estimation, registered diffusion weighted images were denoised by an optimized blockwise NLM filter with CLLS. Mean kurtosis (MK), radial kurtosis (RK), axial kurtosis (AK), mean diffusivity (MD), radial diffusivity (RD), axial diffusivity (AD) and fractional anisotropy (FA), were determined in anatomical structures of the brain and the spinal cord. DTI and DKI metrics, signal-to-noise ratio (SNR) and Chi-square values were quantified in distinct anatomical regions for all subjects, with and without Rician denoising. / Results: The averaged SNR significantly increased with Rician denoising by a factor of 2 while the averaged Chi-square values significantly decreased up to 61% in the brain and up to 43% in the spinal cord after Rician NLM filtering. In the brain, the mean MK varied from 0.70 (putamen) to 1.27 (internal capsule) while AK and RK varied from 0.58 (corpus callosum) to 0.92 (cingulum) and from 0.70 (putamen) to 1.98 (corpus callosum), respectively. In the spinal cord, FA varied from 0.78 in lateral column to 0.81 in dorsal column while MD varied from 0.91 × 10−3 mm2/s (lateral) to 0.93 × 10−3 mm2/s (dorsal). RD varied from 0.34 × 10−3 mm2/s (dorsal) to 0.38 × 10−3 mm2/s (lateral) and AD varied from 1.96 × 10−3 mm2/s (lateral) to 2.11 × 10−3 mm2/s (dorsal). / Conclusions: Our results show a Rician denoising NLM filter incorporated with CLLS significantly increases SNR and reduces estimation errors of DT- and KT-derived metrics, providing the reliable metrics estimation with adequate SNR levels

    Low-lying quasiparticle states and hidden collective charge instabilities in parent cobaltate superconductors (NaxCoO2)

    Full text link
    We report a state-of-the-art photoemission (ARPES) study of high quality single crystals of the NaxCoO2 series focusing on the fine details of the low-energy states. The Fermi velocity is found to be small (< 0.5 eV.A) and only weakly anisotropic over the Fermi surface at all dopings setting the size of the pair wavefunction to be on the order of 10-20 nanometers. In the low doping regime the exchange inter-layer splitting vanishes and two dimensional collective instabilities such as 120-type fluctuations become kinematically allowed. Our results suggest that the unusually small Fermi velocity and the unique symmetry of kinematic instabilities distinguish cobaltates from other unconventional oxide superconductors such as the cuprates or the ruthenates.Comment: Accepted for publication in Phys. Rev. Lett. (2006
    • …
    corecore