17,772 research outputs found

    Thermal response of Space Shuttle wing during reentry heating

    Get PDF
    A structural performance and resizing (SPAR) finite element thermal analysis computer program was used in the heat transfer analysis of the space shuttle orbiter that was subjected to reentry aerodynamic heatings. One wing segment of the right wing (WS 240) and the whole left wing were selected for the thermal analysis. Results showed that the predicted thermal protection system (TPS) temperatures were in good agreement with the space transportation system, trajectory 5 (STS-5) flight-measured temperatures. In addition, calculated aluminum structural temperatures were in fairly good agreement with the flight data up to the point of touchdown. Results also showed that the internal free convection had a considerable effect on the change of structural temperatures after touchdown

    The Fractional Quantum Hall States at ν=13/5\nu=13/5 and 12/512/5 and their Non-Abelian Nature

    Full text link
    We investigate the nature of the fractional quantum Hall (FQH) state at filling factor ν=13/5\nu=13/5, and its particle-hole conjugate state at 12/512/5, with the Coulomb interaction, and address the issue of possible competing states. Based on a large-scale density-matrix renormalization group (DMRG) calculation in spherical geometry, we present evidence that the physics of the Coulomb ground state (GS) at ν=13/5\nu=13/5 and 12/512/5 is captured by the k=3k=3 parafermion Read-Rezayi RR state, RR3\text{RR}_3. We first establish that the state at ν=13/5\nu=13/5 is an incompressible FQH state, with a GS protected by a finite excitation gap, with the shift in accordance with the RR state. Then, by performing a finite-size scaling analysis of the GS energies for ν=12/5\nu=12/5 with different shifts, we find that the RR3\text{RR}_3 state has the lowest energy among different competing states in the thermodynamic limit. We find the fingerprint of RR3\text{RR}_3 topological order in the FQH 13/513/5 and 12/512/5 states, based on their entanglement spectrum and topological entanglement entropy, both of which strongly support their identification with the RR3\text{RR}_3 state. Furthermore, by considering the shift-free infinite-cylinder geometry, we expose two topologically-distinct GS sectors, one identity sector and a second one matching the non-Abelian sector of the Fibonacci anyonic quasiparticle, which serves as additional evidence for the RR3\text{RR}_3 state at 13/513/5 and 12/512/5.Comment: 12 pages, 8 figure

    Topological Characterization of Non-Abelian Moore-Read State using Density-Matrix Renormailzation Group

    Full text link
    The non-Abelian topological order has attracted a lot of attention for its fundamental importance and exciting prospect of topological quantum computation. However, explicit demonstration or identification of the non-Abelian states and the associated statistics in a microscopic model is very challenging. Here, based on density-matrix renormalization group calculation, we provide a complete characterization of the universal properties of bosonic Moore-Read state on Haldane honeycomb lattice model at filling number ν=1\nu=1 for larger systems, including both the edge spectrum and the bulk anyonic quasiparticle (QP) statistics. We first demonstrate that there are three degenerating ground states, for each of which there is a definite anyonic flux threading through the cylinder. We identify the nontrivial countings for the entanglement spectrum in accordance with the corresponding conformal field theory. Through inserting the U(1)U(1) charge flux, it is found that two of the ground states can be adiabatically connected through a fermionic charge-e\textit{e} QP being pumped from one edge to the other, while the ground state in Ising anyon sector evolves back to itself. Furthermore, we calculate the modular matrices S\mathcal{S} and U\mathcal{U}, which contain all the information for the anyonic QPs. In particular, the extracted quantum dimensions, fusion rule and topological spins from modular matrices positively identify the emergence of non-Abelian statistics following the SU(2)2SU(2)_2 Chern-Simons theory.Comment: 5 pages; 3 figure

    Reentry heat transfer analysis of the space shuttle orbiter

    Get PDF
    A structural performance and resizing finite element thermal analysis computer program was used in the reentry heat transfer analysis of the space shuttle. Two typical wing cross sections and a midfuselage cross section were selected for the analysis. The surface heat inputs to the thermal models were obtained from aerodynamic heating analyses, which assumed a purely turbulent boundary layer, a purely laminar boundary layer, separated flow, and transition from laminar to turbulent flow. The effect of internal radiation was found to be quite significant. With the effect of the internal radiation considered, the wing lower skin temperature became about 39 C (70 F) lower. The results were compared with fight data for space transportation system, trajectory 1. The calculated and measured temperatures compared well for the wing if laminar flow was assumed for the lower surface and bay one upper surface and if separated flow was assumed for the upper surfaces of bays other than bay one. For the fuselage, good agreement between the calculated and measured data was obtained if laminar flow was assumed for the bottom surface. The structural temperatures were found to reach their peak values shortly before touchdown. In addition, the finite element solutions were compared with those obtained from the conventional finite difference solutions

    Reentry heating analysis of space shuttle with comparison of flight data

    Get PDF
    Surface heating rates and surface temperatures for a space shuttle reentry profile were calculated for two wing cross sections and one fuselage cross section. Heating rates and temperatures at 12 locations on the wing and 6 locations on the fuselage are presented. The heating on the lower wing was most severe, with peak temperatures reaching values of 1240 C for turbulent flow and 900 C for laminar flow. For the fuselage, the most severe heating occured on the lower glove surface where peak temperatures of 910 C and 700 C were calculated for turbulent flow and laminar flow, respectively. Aluminum structural temperatures were calculated using a finite difference thermal analyzer computer program, and the predicted temperatures are compared to measured flight data. Skin temperatures measured on the lower surface of the wing and bay 1 of the upper surface of the wing agreed best with temperatures calculated assuming laminar flow. The measured temperatures at bays two and four on the upper surface of the wing were in quite good agreement with the temperatures calculated assuming separated flow. The measured temperatures on the lower forward spar cap of bay four were in good agreement with values predicted assuming laminar flow
    • …
    corecore