3,458 research outputs found
Critical behavior in an evolutionary Ultimatum Game
Experimental studies have shown the ubiquity of altruistic behavior in human
societies. The social structure is a fundamental ingredient to understand the
degree of altruism displayed by the members of a society, in contrast to
individual-based features, like for example age or gender, which have been
shown not to be relevant to determine the level of altruistic behavior. We
explore an evolutionary model aiming to delve how altruistic behavior is
affected by social structure. We investigate the dynamics of interacting
individuals playing the Ultimatum Game with their neighbors given by a social
network of interaction. We show that a population self-organizes in a critical
state where the degree of altruism depends on the topology characterizing the
social structure. In general, individuals offering large shares but in turn
accepting large shares, are removed from the population. In heterogeneous
social networks, individuals offering intermediate shares are strongly selected
in contrast to random homogeneous networks where a broad range of offers, below
a critical one, is similarly present in the population.Comment: 13 pages, 7 figure
Nonequilibrium phase transition in a model for social influence
We present extensive numerical simulations of the Axelrod's model for social
influence, aimed at understanding the formation of cultural domains. This is a
nonequilibrium model with short range interactions and a remarkably rich
dynamical behavior. We study the phase diagram of the model and uncover a
nonequilibrium phase transition separating an ordered (culturally polarized)
phase from a disordered (culturally fragmented) one. The nature of the phase
transition can be continuous or discontinuous depending on the model
parameters. At the transition, the size of cultural regions is power-law
distributed.Comment: 5 pages, 4 figure
Birth, death and diffusion of interacting particles
Individual-based models of chemical or biological dynamics usually consider
individual entities diffusing in space and performing a birth-death type
dynamics. In this work we study the properties of a model in this class where
the birth dynamics is mediated by the local, within a given distance, density
of particles. Groups of individuals are formed in the system and in this paper
we concentrate on the study of the properties of these clusters (lifetime,
size, and collective diffusion). In particular, in the limit of the interaction
distance approaching the system size, a unique cluster appears which helps to
understand and characterize the clustering dynamics of the model.Comment: 15 pages, 6 figures, Iop style. To appear in Journal of Physics A:
Condensed matte
Effects of Mass Media and Cultural Drift in a Model for Social Influence
In the context of an extension of Axelrod's model for social influence, we
study the interplay and competition between the cultural drift, represented as
random perturbations, and mass media, introduced by means of an external
homogeneous field. Unlike previous studies [J. C. Gonz\'alez-Avella {\it et
al}, Phys. Rev. E {\bf 72}, 065102(R) (2005)], the mass media coupling proposed
here is capable of affecting the cultural traits of any individual in the
society, including those who do not share any features with the external
message. A noise-driven transition is found: for large noise rates, both the
ordered (culturally polarized) phase and the disordered (culturally fragmented)
phase are observed, while, for lower noise rates, the ordered phase prevails.
In the former case, the external field is found to induce cultural ordering, a
behavior opposite to that reported in previous studies using a different
prescription for the mass media interaction. We compare the predictions of this
model to statistical data measuring the impact of a mass media vasectomy
promotion campaign in Brazil.Comment: 10 pages, 3 figures; minor changes; added references. To appear in
IJMP
SPONTANEOUS RECOVERY OF FLUORESCENCE BY PHOTOBLEACHED SURFACE-ADSORBED PROTEINS
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73314/1/j.1751-1097.1995.tb05264.x.pd
Opinion dynamics: rise and fall of political parties
We analyze the evolution of political organizations using a model in which
agents change their opinions via two competing mechanisms. Two agents may
interact and reach consensus, and additionally, individual agents may
spontaneously change their opinions by a random, diffusive process. We find
three distinct possibilities. For strong diffusion, the distribution of
opinions is uniform and no political organizations (parties) are formed. For
weak diffusion, parties do form and furthermore, the political landscape
continually evolves as small parties merge into larger ones. Without diffusion,
a pattern develops: parties have the same size and they possess equal niches.
These phenomena are analyzed using pattern formation and scaling techniques.Comment: 5 pages, 5 figure
- …