2,155 research outputs found
Empowering and assisting natural human mobility: The simbiosis walker
This paper presents the complete development of the Simbiosis Smart Walker. The device is equipped with a set of sensor subsystems to acquire user-machine interaction forces and the temporal evolution of user's feet during gait. The authors present an adaptive filtering technique used for the identification and separation of different components found on the human-machine interaction forces. This technique allowed isolating the components related with the navigational commands and developing a Fuzzy logic controller to guide the device. The Smart Walker was clinically validated at the Spinal Cord Injury Hospital of Toledo - Spain, presenting great acceptability by spinal chord injury patients and clinical staf
A generalized quantum microcanonical ensemble
We discuss a generalized quantum microcanonical ensemble. It describes
isolated systems that are not necessarily in an eigenstate of the Hamilton
operator. Statistical averages are obtained by a combination of a time average
and a maximum entropy argument to resolve the lack of knowledge about initial
conditions. As a result, statistical averages of linear observables coincide
with values obtained in the canonical ensemble. Non-canonical averages can be
obtained by taking into account conserved quantities which are non-linear
functions of the microstate.Comment: improved version, new titl
Observation of a low-lying neutron-unbound state in 19C
Proton removal reactions from a secondary 22N beam were utilized to populate
unbound states in neutron-rich carbon isotopes. Neutrons were measured with the
Modular Neutron Array (MoNA) in coincidence with carbon fragments. A resonance
with a decay energy of 76(14) keV was observed in the system 18C+n
corresponding to a state in 19C at an excitation energy of 653(95)keV. This
resonance could correspond to the first 5/2+ state which was recently
speculated to be unbound in order to describe 1n and 2n removal cross section
measurements from 20C.Comment: accepted for publication in Nucl. Phys.
Critical Velocity of Vortex Nucleation in Rotating Superfluid 3He-A
We have measured the critical velocity v_c at which 3He-A in a rotating
cylinder becomes unstable against the formation of quantized vortex lines with
continuous (singularity-free) core structure. We find that v_c is distributed
between a maximum and minimum limit, which we ascribe to a dependence on the
texture of the orbital angular momentum l(r) in the cylinder. Slow cool down
through T_c in rotation yields l(r) textures for which the measured v_c's are
in good agreement with the calculated instability of the expected l texture.Comment: 4 pages, 3 figure
On quantum microcanonical equilibrium
A quantum microcanonical postulate is proposed as a basis for the equilibrium properties of small quantum systems. Expressions for the corresponding density of states are derived, and are used to establish the existence of phase transitions for finite quantum systems. A grand microcanonical ensemble is introduced, which can be used to obtain new rigorous results in quantum statistical mechanics.Accepted versio
Exact quantization of a PT-symmetric (reversible) Li\'enard-type nonlinear oscillator
We carry out an exact quantization of a PT symmetric (reversible) Li\'{e}nard
type one dimensional nonlinear oscillator both semiclassically and quantum
mechanically. The associated time independent classical Hamiltonian is of
non-standard type and is invariant under a combined coordinate reflection and
time reversal transformation. We use von Roos symmetric ordering procedure to
write down the appropriate quantum Hamiltonian. While the quantum problem
cannot be tackled in coordinate space, we show how the problem can be
successfully solved in momentum space by solving the underlying Schr\"{o}dinger
equation therein. We obtain explicitly the eigenvalues and eigenfunctions (in
momentum space) and deduce the remarkable result that the spectrum agrees
exactly with that of the linear harmonic oscillator, which is also confirmed by
a semiclassical modified Bohr-Sommerfeld quantization rule, while the
eigenfunctions are completely different.Comment: 10 pages, 1 figure, Fast Track Communicatio
Complex trajectories of a simple pendulum
Accepted versio
Variability of the extreme z=4.72 blazar, GB 1428+4217
We report X-ray and radio variability of GB 1428+4217 which confirm its
blazar nature. IR observations reveal a powerful optical-UV component, not
obscured by dust, which is suggestive of the presence of a billion solar mass
black hole, already formed by z ~ 5. A detailed comparison of the broad band
spectral properties of GB 1428+4217 with those of nearby blazars shows it to be
extreme, but nevertheless consistent with the trend found for nearby sources.Comment: MNRAS, in press - 5 pages, 5 figure
K Corrections For Type Ia Supernovae and a Test for Spatial Variation of the Hubble Constant
Cross-filter K corrections for a sample of "normal" Type Ia supernovae (SNe)
have been calculated for a range of epochs. With appropriate filter choices,
the combined statistical and systematic K correction dispersion of the full
sample lies within 0.05 mag for redshifts z<0.7. This narrow dispersion of the
calculated K correction allows the Type Ia to be used as a cosmological probe.
We use the K corrections with observations of seven SNe at redshifts 0.3 < z
<0.5 to bound the possible difference between the locally measured Hubble
constant (H_L) and the true cosmological Hubble constant (H_0).Comment: 6 pages, 3 Postscript figures, uuencoded uses crckapb.sty and
psfig.sty. To appear in Thermonuclear Supernovae (NATO ASI), eds. R. Canal,
P. Ruiz-LaPuente, and J. Isern. Postscript version is also available at
http://www-supernova.lbl.gov
- …