14,061 research outputs found

    Spin Foam Models of Matter Coupled to Gravity

    Get PDF
    We construct a class of spin foam models describing matter coupled to gravity, such that the gravitational sector is described by the unitary irreducible representations of the appropriate symmetry group, while the matter sector is described by the finite-dimensional irreducible representations of that group. The corresponding spin foam amplitudes in the four-dimensional gravity case are expressed in terms of the spin network amplitudes for pentagrams with additional external and internal matter edges. We also give a quantum field theory formulation of the model, where the matter degrees of freedom are described by spin network fields carrying the indices from the appropriate group representation. In the non-topological Lorentzian gravity case, we argue that the matter representations should be appropriate SO(3) or SO(2) representations contained in a given Lorentz matter representation, depending on whether one wants to describe a massive or a massless matter field. The corresponding spin network amplitudes are given as multiple integrals of propagators which are matrix spherical functions.Comment: 30 pages, 9 figures, further remarks and references added. Version to appear in Class. Quant. Gra

    Finiteness and Dual Variables for Lorentzian Spin Foam Models

    Full text link
    We describe here some new results concerning the Lorentzian Barrett-Crane model, a well-known spin foam formulation of quantum gravity. Generalizing an existing finiteness result, we provide a concise proof of finiteness of the partition function associated to all non-degenerate triangulations of 4-manifolds and for a class of degenerate triangulations not previously shown. This is accomplished by a suitable re-factoring and re-ordering of integration, through which a large set of variables can be eliminated. The resulting formulation can be interpreted as a ``dual variables'' model that uses hyperboloid variables associated to spin foam edges in place of representation variables associated to faces. We outline how this method may also be useful for numerical computations, which have so far proven to be very challenging for Lorentzian spin foam models.Comment: 15 pages, 1 figur

    Spin Foam Models of Yang-Mills Theory Coupled to Gravity

    Full text link
    We construct a spin foam model of Yang-Mills theory coupled to gravity by using a discretized path integral of the BF theory with polynomial interactions and the Barret-Crane ansatz. In the Euclidian gravity case we obtain a vertex amplitude which is determined by a vertex operator acting on a simple spin network function. The Euclidian gravity results can be straightforwardly extended to the Lorentzian case, so that we propose a Lorentzian spin foam model of Yang-Mills theory coupled to gravity.Comment: 10 page

    Selective spin coupling through a single exciton

    Get PDF
    We present a novel scheme for performing a conditional phase gate between two spin qubits in adjacent semiconductor quantum dots through delocalized single exciton states, formed through the inter-dot Foerster interaction. We consider two resonant quantum dots, each containing a single excess conduction band electron whose spin embodies the qubit. We demonstrate that both the two-qubit gate, and arbitrary single-qubit rotations, may be realized to a high fidelity with current semiconductor and laser technology.Comment: 5 pages, 3 figures; published version, equation formatting improved, references adde

    Asymptotics of 10j symbols

    Full text link
    The Riemannian 10j symbols are spin networks that assign an amplitude to each 4-simplex in the Barrett-Crane model of Riemannian quantum gravity. This amplitude is a function of the areas of the 10 faces of the 4-simplex, and Barrett and Williams have shown that one contribution to its asymptotics comes from the Regge action for all non-degenerate 4-simplices with the specified face areas. However, we show numerically that the dominant contribution comes from degenerate 4-simplices. As a consequence, one can compute the asymptotics of the Riemannian 10j symbols by evaluating a `degenerate spin network', where the rotation group SO(4) is replaced by the Euclidean group of isometries of R^3. We conjecture formulas for the asymptotics of a large class of Riemannian and Lorentzian spin networks in terms of these degenerate spin networks, and check these formulas in some special cases. Among other things, this conjecture implies that the Lorentzian 10j symbols are asymptotic to 1/16 times the Riemannian ones.Comment: 25 pages LaTeX with 8 encapsulated Postscript figures. v2 has various clarifications and better page breaks. v3 is the final version, to appear in Classical and Quantum Gravity, and has a few minor corrections and additional reference

    On the causal Barrett--Crane model: measure, coupling constant, Wick rotation, symmetries and observables

    Full text link
    We discuss various features and details of two versions of the Barrett-Crane spin foam model of quantum gravity, first of the Spin(4)-symmetric Riemannian model and second of the SL(2,C)-symmetric Lorentzian version in which all tetrahedra are space-like. Recently, Livine and Oriti proposed to introduce a causal structure into the Lorentzian Barrett--Crane model from which one can construct a path integral that corresponds to the causal (Feynman) propagator. We show how to obtain convergent integrals for the 10j-symbols and how a dimensionless constant can be introduced into the model. We propose a `Wick rotation' which turns the rapidly oscillating complex amplitudes of the Feynman path integral into positive real and bounded weights. This construction does not yet have the status of a theorem, but it can be used as an alternative definition of the propagator and makes the causal model accessible by standard numerical simulation algorithms. In addition, we identify the local symmetries of the models and show how their four-simplex amplitudes can be re-expressed in terms of the ordinary relativistic 10j-symbols. Finally, motivated by possible numerical simulations, we express the matrix elements that are defined by the model, in terms of the continuous connection variables and determine the most general observable in the connection picture. Everything is done on a fixed two-complex.Comment: 22 pages, LaTeX 2e, 1 figur

    The Construction of Sorkin Triangulations

    Get PDF
    Some time ago, Sorkin (1975) reported investigations of the time evolution and initial value problems in Regge calculus, for one triangulation each of the manifolds RS3R*S^3 and R4R^4. Here we display the simple, local characteristic of those triangulations which underlies the structure found by Sorkin, and emphasise its general applicability, and therefore the general validity of Sorkin's conclusions. We also make some elementary observations on the resulting structure of the time evolution and initial value problems in Regge calculus, and add some comments and speculations.Comment: 5 pages (plus one figure not included, available from author on request), Plain Tex, no local preprint number (Only change: omitted "\magnification" command now replaced

    Regge Calculus as a Fourth Order Method in Numerical Relativity

    Get PDF
    The convergence properties of numerical Regge calculus as an approximation to continuum vacuum General Relativity is studied, both analytically and numerically. The Regge equations are evaluated on continuum spacetimes by assigning squared geodesic distances in the continuum manifold to the squared edge lengths in the simplicial manifold. It is found analytically that, individually, the Regge equations converge to zero as the second power of the lattice spacing, but that an average over local Regge equations converges to zero as (at the very least) the third power of the lattice spacing. Numerical studies using analytic solutions to the Einstein equations show that these averages actually converge to zero as the fourth power of the lattice spacing.Comment: 14 pages, LaTeX, 8 figures mailed in separate file or email author directl

    Observation of spinor dynamics in optically trapped 87Rb Bose-Einstein Condensates

    Full text link
    We measure spin mixing of F=1 and F=2 spinor condensates of 87Rb atoms confined in an optical trap. We determine the spin mixing time to be typically less than 600 ms and observe spin population oscillations. The equilibrium spin configuration in the F=1 manifold is measured for different magnetic fields and found to show ferromagnetic behavior for low field gradients. An F=2 condensate is created by microwave excitation from F=1 manifold, and this spin-2 condensate is observed to decay exponentially with time constant 250 ms. Despite the short lifetime in the F=2 manifold, spin mixing of the condensate is observed within 50 ms.Comment: 4 pages, 6 figure

    A Storage Ring for Neutral Atoms

    Get PDF
    We have demonstrated a storage ring for ultra-cold neutral atoms. Atoms with mean velocities of 1 m/s corresponding to kinetic energies of ~100 neV are confined to a 2 cm diameter ring by magnetic forces produced by two current-carrying wires. Up to 10^6 atoms are loaded at a time in the ring, and 7 revolutions are clearly observed. Additionally, we have demonstrated multiple loading of the ring and deterministic manipulation of the longitudinal velocity distribution of the atoms using applied laser pulses. Applications of this ring include large area atom interferometers and cw monochromatic atomic beam generation.Comment: 4 pages, 5 figure
    corecore