1 research outputs found

    Structural and Magnetic Phase Transitions in the A<sub><i>n</i></sub>B<sub><i>n</i></sub>O<sub>3<i>n</i>–2</sub> Anion-Deficient Perovskites Pb<sub>2</sub>Ba<sub>2</sub>BiFe<sub>5</sub>O<sub>13</sub> and Pb<sub>1.5</sub>Ba<sub>2.5</sub>Bi<sub>2</sub>Fe<sub>6</sub>O<sub>16</sub>

    No full text
    Novel anion-deficient perovskite-based ferrites Pb<sub>2</sub>Ba<sub>2</sub>BiFe<sub>5</sub>O<sub>13</sub> and Pb<sub>1.5</sub>Ba<sub>2.5</sub>Bi<sub>2</sub>Fe<sub>6</sub>O<sub>16</sub> were synthesized by solid-state reaction in air. Pb<sub>2</sub>Ba<sub>2</sub>BiFe<sub>5</sub>O<sub>13</sub> and Pb<sub>1.5</sub>Ba<sub>2.5</sub>Bi<sub>2</sub>Fe<sub>6</sub>O<sub>16</sub> belong to the perovskite-based A<sub><i>n</i></sub>B<sub><i>n</i></sub>O<sub>3<i>n</i>–2</sub> homologous series with <i>n</i> = 5 and 6, respectively, with a unit cell related to the perovskite subcell <i>a</i><sub>p</sub> as <i>a</i><sub>p</sub>√2 × <i>a</i><sub>p</sub> × <i>na</i><sub>p</sub>√2. Their structures are derived from the perovskite one by slicing it with 1/2[110]<sub>p</sub>(1̅01)<sub>p</sub> crystallographic shear (CS) planes. The CS operation results in (1̅01)<sub>p</sub>-shaped perovskite blocks with a thickness of (<i>n</i> – 2) FeO<sub>6</sub> octahedra connected to each other through double chains of edge-sharing FeO<sub>5</sub> distorted tetragonal pyramids which can adopt two distinct mirror-related configurations. Ordering of chains with a different configuration provides an extra level of structure complexity. Above <i>T</i> ≈ 750 K for Pb<sub>2</sub>Ba<sub>2</sub>BiFe<sub>5</sub>O<sub>13</sub> and <i>T</i> ≈ 400 K for Pb<sub>1.5</sub>Ba<sub>2.5</sub>Bi<sub>2</sub>Fe<sub>6</sub>O<sub>16</sub> the chains have a disordered arrangement. On cooling, a second-order structural phase transition to the ordered state occurs in both compounds. Symmetry changes upon phase transition are analyzed using a combination of superspace crystallography and group theory approach. Correlations between the chain ordering pattern and octahedral tilting in the perovskite blocks are discussed. Pb<sub>2</sub>Ba<sub>2</sub>BiFe<sub>5</sub>O<sub>13</sub> and Pb<sub>1.5</sub>Ba<sub>2.5</sub>Bi<sub>2</sub>Fe<sub>6</sub>O<sub>16</sub> undergo a transition into an antiferromagnetically (AFM) ordered state, which is characterized by a G-type AFM ordering of the Fe magnetic moments within the perovskite blocks. The AFM perovskite blocks are stacked along the CS planes producing alternating FM and AFM-aligned Fe–Fe pairs. In spite of the apparent frustration of the magnetic coupling between the perovskite blocks, all <i>n</i> = 4, 5, 6 A<sub><i>n</i></sub>Fe<sub><i>n</i></sub>O<sub>3<i>n</i>–2</sub> (A = Pb, Bi, Ba) feature robust antiferromagnetism with similar Néel temperatures of 623–632 K
    corecore