96 research outputs found

    Геодивайдер 102–103° в.д. в современной структуре литосферы Центральной Азии

    Get PDF
    A quasi-linear zone of noticeable geological and geophysical changes, which coincides approximately with 102–103° E meridians, is termed by the authors as “geodivider”. Active submeridional faults are observed predominantly along the zone and coincide with its strike. Seismicity is most intensive in the central part of this zone, from the Lake Baikal to the Three Rivers Region at the Sino-Myanmar frontier. Transects with deep seismic sections and energy dissipation graphs show most sharply increasing seismic energy amounts and hypocenter depths in the western part of the geodivider which delimits (in the first approximation) the Central Asian and East Asian transitional zones between the North Eurasian, Indian and Pacific lithosphere plates. The transpression tectonic regime dominates west of the geodivider under the influence of the Hindustan Indentor pressure, and the transtension regime prevails east of it due to the Pacific subduction slab submergence and continuation. The regime change coincides with an abrupt increase in the crust thickness – from 35–40 km to 45–70 km – west of the geodivider, as reflected in the geophysical fields and metallogenic characteristics of the crust. The direction of P- and S-waves anisotropy together with the GPS data show decoupling layers of the crust and mantle in the southern part of the geodivider. According to our investigations, the 102–103° E geodivider is a regional geological-geophysical border that may be compared with the Tornquist Line, and, by its scale, with the Uralian and Appalachian fronts and some others large structures.Квазилинейная зона заметных геологических и геофизических изменений совпадает приблизительно с меридианами 102–103° в.д. Активные субмеридиональные разломы развиты в этой зоне, названной авторами геодивайдером 102–103° в.д. Наиболее интенсивная сейсмичность характеризует центральную часть геодивайдера от озера Байкал до региона Трех рек на границе Китая и Мианмар. Проведение трансектов с глубинными сейсмическими разрезами и графиками диссипации сейсмической энергии показывает преимущественно резкое возрастание объемов сейсмической энергии и глубины гипоцентров на западном крыле геодивайдера. Геодивайдер разделяет, в первом приближении, Центрально-Азиатскую и Восточно-Азиатскую транзитные зоны между Северо-Евразийской, Индийской и Тихоокеанской литосферными плитами. Тектонический режим транспрессии преобладает к западу от геодивайдера под влиянием давления Индостанского индентора, и режим транстенсии распространен к востоку от него, благодаря глубокому погружению и продолжению Тихоокеанского слэба. Смена режимов совпадает с резким увеличением мощности коры к западу от геодивайдера от 35–40 до 45–70 км, отражающимся в геофизических полях и коровых металлогенических характеристиках. Направление P- и S-волн анизотропии наряду с данными GPS показывает их несовпадение в различных слоях коры и мантии в южной части геодивайдера. По результатам наших исследований геодивайдер 102–103° в.д. представляет собой тип геолого-геофизической границы, сопоставимой с линией Торнквиста, по масштабу с Уральским и Аппалачским фронтами и с рядом других крупных структур

    Interference effects in two-photon ATI by multiple orders high harmonics with random or locked phases

    Full text link
    We numerically study 2-photon processes using a set of harmonics from a Ti:Sapphire laser and in particular interference effects in the Above Threshold Ionization spectra. We compare the situation where the harmonic phases are assumed locked to the case where they have a random distribution. Suggestions for possible experiments, using realistic parameters are discussed.Comment: 11 pages, 13 figures, LaTe

    Reverse Detection of Short-Term Earthquake Precursors

    Full text link
    We introduce a new approach to short-term earthquake prediction based on the concept of selforganization of seismically active fault networks. That approach is named "Reverse Detection of Precursors" (RDP), since it considers precursors in reverse order of their appearance. This makes it possible to detect precursors undetectable by direct analysis. Possible mechanisms underlying RDP are outlined. RDP is described with a concrete example: we consider as short-term precursors the newly introduced chains of earthquakes reflecting the rise of an earthquake correlation range; and detect (retrospectively) such chains a few months before two prominent Californian earthquakes - Landers, 1992, M = 7.6, and Hector Mine, 1999, M = 7.3, with one false alarm. Similar results (described elsewhere) are obtained by RDP for 21 more strong earthquakes in California (M >= 6.4), Japan (M >= 7.0) and the Eastern Mediterranean (M >= 6.5). Validation of the RDP approach requires, as always, prediction in advance for which this study sets up a base. We have the first case of advance prediction; it was reported before Tokachi-oki earthquake (near Hokkaido island, Japan), Sept. 25, 2003, M = 8.1. RDP has potentially important applications to other precursors and to prediction of other critical phenomena besides earthquakes. In particular, it might vindicate some short-term precursors, previously rejected as giving too many false alarms.Comment: 17 pages, 5 figure

    ГЕОДИНАМИЧЕСКИЕ РЕЖИМЫ ЦЕНТРАЛЬНОЙ АЗИИ ЗАПАДНЕЕ И ВОСТОЧНЕЕ ГЕОРАЗДЕЛА 102–104°

    Get PDF
    Ample geologic and geophysical data provide the basis for distinguishing the 102–104° E geodivider in the North, Central and South Asia. The geodivider’s central part is confirmed by the data on seismicity, seismically active faults and the modern crust block structure. These data and historical and instrumentally identified earthquake epicenters were used for a more correct definition of the block boundaries and interblock zones in the central part of the geodivider and in its wings. Seismic energy is considerably increased (to 1011–1016 J) in the eastern part of the geodivider’s western wing, and rarely increased directly in the geodivider itself. Near the geodivider, a seismic energy increase is detected east of it only at the western border of the South-Eastern China Block. The authors analyzed deep seismic sections and constructed energy dissipation graphs along transects crossing the geodivider and its western wing. The analysis and the graphs show the predomination of left-lateral NW-striking slips in the north, thrusts to the east and southeast in the center, and right-lateral NE-striking slips in the south. The total seismic energy increases constantly to the west. In the central and northern segments of the geodivider’s central part and west of it, horizontal blocks displacements cause a direct influence on seismicity level increasing and changes in geodynamic regimes within the investigated territory of Central Asia. Changes in the horizontal displacement vector are accompanied by the change of tectonic strain regimes. Increased heat flow values to the east from the geodivider within the East Asian transit zone are probably related to the change of the geodynamic regimes in the same direction under the influence of the submerged Pacific slab. The data obtained by the Chinese and Russian researchers confirm delamination (stratification) processes in the Southeast Tibet crust during its interaction with the colder and thicker lithosphere of Southeast China, and displacement of its upper layers to the southeast and south, as we supposed in our earlier publications.Геораздел 102–104° в.д. выделяется по многочисленным геологическим и геофизическим при­знакам в Северной, Центральной и Южной Азии, подтверждаемым в его центральной части данными по сейсмичности, сейсмоактивным разломам и современному блоковому строению земной коры. На основании этих данных и по распространению эпицентров инструментально зафиксированных и исторических землетрясе­ний откорректированы границы блоков и межблоковых зон в центральной части геораздела и на его крыльях. Значительное возрастание объемов высвобождающейся сейсмической энергии до 1011–1016 Дж происходит в восточной части западного крыла геораздела, реже – непосредственно в нем, а к востоку от него – только на западной границе блока Юго-Восточного Китая вблизи геораздела. Проведенный авторами анализ глубинных сейсмических разрезов и графиков диссипации энергии вдоль трансектов, пересекающих геораздел и его западное крыло, показывает преобладание левосторонних сдвигов с северо-западным простиранием на севере, надвигов к востоку и юго-востоку в центре и правосторонних сдвигов с северо-восточным простиранием на юге. Общий уровень объема энергии постоянно возрастает к западу. Перемещения по горизонтали блоков в центральном и северном сегментах центральной части геораздела 102–104° в.д. и к западу от него по данным GPS оказывают непосредственное влияние на увеличение уровня сейсмичности и изменение геодинамических режимов в пределах изучаемых районов Центральной Азии. Смена направления векторов горизонтального перемещения сопровождается изменением режима тектонических напряжений. Установлено возрастание значений теплового потока к востоку от геораздела в Восточно-Азиатской транзитной зоне, предположительно связанное со сменой геодинамического режима в том же направлении под влиянием погруженного тихоокеанского слэба. Данные по сейсмической анизотропии и томографии литосферы, полученные китайскими и российскими исследователями, подтверждают процессы деламинации коры Юго-Восточного Тибета при ее взаимодействии с более холодной и мощной литосферой Юго-Восточного Китая и перемещение ее верхних слоев к юго-востоку и к югу, предполагавшееся в более ранних работах авторов

    2. Methods of Predictive Metallogeny in the USSR

    No full text

    CENTRAL ASIAN GEODYNAMIC REGIMES WEST AND EAST 102–104° GEODIVIDER

    Get PDF
    Ample geologic and geophysical data provide the basis for distinguishing the 102–104° E geodivider in the North, Central and South Asia. The geodivider’s central part is confirmed by the data on seismicity, seismically active faults and the modern crust block structure. These data and historical and instrumentally identified earthquake epicenters were used for a more correct definition of the block boundaries and interblock zones in the central part of the geodivider and in its wings. Seismic energy is considerably increased (to 1011–1016 J) in the eastern part of the geodivider’s western wing, and rarely increased directly in the geodivider itself. Near the geodivider, a seismic energy increase is detected east of it only at the western border of the South-Eastern China Block. The authors analyzed deep seismic sections and constructed energy dissipation graphs along transects crossing the geodivider and its western wing. The analysis and the graphs show the predomination of left-lateral NW-striking slips in the north, thrusts to the east and southeast in the center, and right-lateral NE-striking slips in the south. The total seismic energy increases constantly to the west. In the central and northern segments of the geodivider’s central part and west of it, horizontal blocks displacements cause a direct influence on seismicity level increasing and changes in geodynamic regimes within the investigated territory of Central Asia. Changes in the horizontal displacement vector are accompanied by the change of tectonic strain regimes. Increased heat flow values to the east from the geodivider within the East Asian transit zone are probably related to the change of the geodynamic regimes in the same direction under the influence of the submerged Pacific slab. The data obtained by the Chinese and Russian researchers confirm delamination (stratification) processes in the Southeast Tibet crust during its interaction with the colder and thicker lithosphere of Southeast China, and displacement of its upper layers to the southeast and south, as we supposed in our earlier publications

    The 102–103° E geodivider in the modern lithosphere structure of Сentral Asia

    Get PDF
    A quasi-linear zone of noticeable geological and geophysical changes, which coincides approximately with 102–103° E meridians, is termed by the authors as “geodivider”. Active submeridional faults are observed predominantly along the zone and coincide with its strike. Seismicity is most intensive in the central part of this zone, from the Lake Baikal to the Three Rivers Region at the Sino-Myanmar frontier. Transects with deep seismic sections and energy dissipation graphs show most sharply increasing seismic energy amounts and hypocenter depths in the western part of the geodivider which delimits (in the first approximation) the Central Asian and East Asian transitional zones between the North Eurasian, Indian and Pacific lithosphere plates. The transpression tectonic regime dominates west of the geodivider under the influence of the Hindustan Indentor pressure, and the transtension regime prevails east of it due to the Pacific subduction slab submergence and continuation. The regime change coincides with an abrupt increase in the crust thickness – from 35–40 km to 45–70 km – west of the geodivider, as reflected in the geophysical fields and metallogenic characteristics of the crust. The direction of P- and S-waves anisotropy together with the GPS data show decoupling layers of the crust and mantle in the southern part of the geodivider. According to our investigations, the 102–103° E geodivider is a regional geological-geophysical border that may be compared with the Tornquist Line, and, by its scale, with the Uralian and Appalachian fronts and some others large structures
    corecore