21,636 research outputs found

    Energy Density Functionals From the Strong-Coupling Limit Applied to the Anions of the He Isoelectronic Series

    Full text link
    Anions and radicals are important for many applications including environmental chemistry, semiconductors, and charge transfer, but are poorly described by the available approximate energy density functionals. Here we test an approximate exchange-correlation functional based on the exact strong-coupling limit of the Hohenberg-Kohn functional on the prototypical case of the He isoelectronic series with varying nuclear charge Z<2Z<2, which includes weakly bound negative ions and a quantum phase transition at a critical value of ZZ, representing a big challenge for density functional theory. We use accurate wavefunction calculations to validate our results, comparing energies and Kohn-Sham potentials, thus also providing useful reference data close to and at the quantum phase transition. We show that our functional is able to bind H−^- and to capture in general the physics of loosely bound anions, with a tendency to strongly overbind that can be proven mathematically. We also include corrections based on the uniform electron gas which improve the results.Comment: Accepted for the JCP Special Topic Issue "Advances in DFT Methodology

    Jastrow correlation factor for atoms, molecules, and solids

    Get PDF
    A form of Jastrow factor is introduced for use in quantum Monte Carlo simulations of finite and periodic systems. Test data are presented for atoms, molecules, and solids, including both all-electron and pseudopotential atoms. We demonstrate that our Jastrow factor is able to retrieve a large fraction of the correlation energy

    Examination of the factor structure of the Schizotypal Personality Questionnaire (SPQ) among British and Trinidadian adults

    Get PDF
    Much debate in schizotypal research has centred on the factor structure of the Schizotypal Personality Questionnaire (SPQ), with research variously showing higher-order dimensionality consisting of two to seven dimensions. In addition, cross-cultural support for the stability of those factors remains limited. Here, we examined the factor structure of the SPQ among British and Trinidadian adults. Participants from a White British sub-sample (n = 351) resident in the UK and from an African Caribbean sub-sample (n = 284) resident in Trinidad completed the SPQ. The higher-order factor structure of the SPQ was analysed through confirmatory factor analysis, followed by multiple-group analysis for the model of best-fit. Between-group differences for sex and ethnicity were investigated using multivariate analysis of variance in relation to the higher-order domains. The model of best-fit was the four-factor structure, which demonstrated measurement invariance across groups. Additionally, these data had an adequate fit for two alternative models: a) 3 factors and b) a modified 4-factor. The British sub-sample had significantly higher scores across all domains than the Trinidadian group, and men scored significantly higher on the disorganised domain than women. The four-factor structure received confirmatory support and, importantly, support for use with populations varying in ethnicity and culture

    Multispin correlations and pseudo-thermalization of the transient density matrix in solid-state NMR: free induction decay and magic echo

    Full text link
    Quantum unitary evolution typically leads to thermalization of generic interacting many-body systems. There are very few known general methods for reversing this process, and we focus on the magic echo, a radio-frequency pulse sequence known to approximately "rewind" the time evolution of dipolar coupled homonuclear spin systems in a large magnetic field. By combining analytic, numerical, and experimental results we systematically investigate factors leading to the degradation of magic echoes, as observed in reduced revival of mean transverse magnetization. Going beyond the conventional analysis based on mean magnetization we use a phase encoding technique to measure the growth of spin correlations in the density matrix at different points in time following magic echoes of varied durations and compare the results to those obtained during a free induction decay (FID). While considerable differences are documented at short times, the long-time behavior of the density matrix appears to be remarkably universal among the types of initial states considered - simple low order multispin correlations are observed to decay exponentially at the same rate, seeding the onset of increasingly complex high order correlations. This manifestly athermal process is constrained by conservation of the second moment of the spectrum of the density matrix and proceeds indefinitely, assuming unitary dynamics.Comment: 12 Pages, 9 figure

    Atmospheric Pco2 Perturbations Associated with the Central Atlantic Magmatic Province

    Get PDF
    The effects of a large igneous province on the concentration of atmospheric carbon dioxide (Pco2) are mostly unknown. In this study, we estimate Pco2 from stable isotopic values of pedogenic carbonates interbedded with volcanics of the Central Atlantic Magmatic Province (CAMP) in the Newark Basin, eastern North America. We find pre-CAMP Pco2 values of ~2000 parts per million (ppm), increasing to ~4400 ppm immediately after the first volcanic unit, followed by a steady decrease toward pre-eruptive levels over the subsequent 300 thousand years, a pattern that is repeated after the second and third flow units. We interpret each Pco2 increase as a direct response to magmatic activity (primary outgassing or contact metamorphism). The systematic decreases in Pco2 after each magmatic episode probably reflect consumption of atmospheric CO2 by weathering of silicates, stimulated by fresh CAMP volcanics
    • …
    corecore