8 research outputs found

    NANOSTRUCTURES (Cu,Zn)/h-BN FOR HETEROGENEOUS CATALYSIS

    Full text link
    (Cu,Zn)/h-BN heterogeneous nanostructures were successfully synthesized by wet chem-istry reaction. Metal nanopartciles, 10-20 nm in dimension, were homogeneously distributed over the BN support. Nanocatalysts showed high catalytic activity in CO oxidation reaction.Работа выполнена при финансовой поддержке Российского Научного Фонда (соглашение № 20-79-10286)

    PT/H-BN NANOSTRUCTURES DEVELOPMENT FOR HETEROGENEOUS CATALYSIS

    Full text link
    Pt/h-BN hybrid nanostructures were successfully synthesized by the impregnation method. Pt nanopartciles, 3-10 nm in size, were homogeneously distributed on over the BN support. Nanocatalysts showed high catalytic activity in CO oxidation, full conversion was achieved at 184 °С.Работа выполнена при финансовой поддержке Российского научного фонда (проект № 20-79-10286)

    Microstructure and catalytic properties of Fe3O4/BN, Fe3O4(Pt)/BN, and FePt/BN heterogeneous nanomaterials in CO2 hydrogenation reaction: Experimental and theoretical insights

    No full text
    Hexagonal boron nitride (h-BN) nanosheets are a promising material for various applications including catalysis. Herein, h-BN-supported Fe-based catalysts are characterised with respect to CO2 hydrogenation reaction. Heterogeneous Fe3O4/BN, Fe3O4(Pt)/BN, and FePt/BN nanostructures are obtained via polyol synthesis in ethylene glycol. The sizes of Fe3O4 nanoparticles and their distributions over h-BN surfaces depend on the amount of H2PtCl6 added to the synthesis media. Bimetallic FePt nanoparticles are formed when Pt content is high enough. In situ TEM analysis shows the formation of core–shell h-BN@FePt nanoparticles during heating that prevents FePt NPs from further sintering during the catalytic process. The mechanism of Fe and Pt interaction is elucidated based on the molecular dynamic simulations. The FePt/BN nanomaterials show significantly higher CO2 conversion rate compared to the Fe3O4/BN and Fe3O4(Pt)/BN heterogeneous nanomaterials and exhibit almost 100% selectivity to carbon monoxide. The Fe3O4/BN and Fe3O4(Pt)/BN nanomaterials show better selectivity to hydrocarbons. The possible reaction pathways are discussed based on the calculated sorption energies of all reactants, intermediate compounds, and reaction products. The study highlights pronounced catalytic properties of the developed system and reveals a unique interaction mechanism between its components increasing their stability.</p

    Hexagonal BN- and BNO-supported Au and Pt nanocatalysts in carbon monoxide oxidation and carbon dioxide hydrogenation reactions

    No full text
    Environmental protection requires solving the problem of utilization and reduction of CO and CO2 emissions. Herein, Au/h-BN(O) and Pt/h-BN(O) nanohybrids are thoroughly analyzed in CO oxidation and CO2 hydrogenation reactions. The nanohybrids differ in catalytic particle size and particle distribution. The particles are smaller (1-6 nm) and display a narrower size distribution in the case of Pt-based nanomaterials. The Pt/h-BN(O) nanohybrids exhibit high catalytic activity in CO conversion and carbon dioxide hydrogenation reactions. For both systems, the oxidative state of BN support affects the catalytic activity. The possible catalytic reaction mechanisms are proposed based on DFT calculations. A charge density distribution at the Pt/h-BN interface increases oxygen absorption, thereby accelerating oxygen-associated chemical reactions

    Advances in the use of terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA genes to characterize microbial communities

    No full text
    Terminal restriction fragment length polymorphism (T-RFLP) analysis is a popular high-throughput fingerprinting technique used to monitor changes in the structure and composition of microbial communities. This approach is widely used because it offers a compromise between the information gained and labor intensity. In this review, we discuss the progress made in T-RFLP analysis of 16S rRNA genes and functional genes over the last 10 years and evaluate the performance of this technique when used in conjunction with different statistical methods. Web-based tools designed to perform virtual polymerase chain reaction and restriction enzyme digests greatly facilitate the choice of primers and restriction enzymes for T-RFLP analysis. Significant improvements have also been made in the statistical analysis of T-RFLP profiles such as the introduction of objective procedures to distinguish between signal and noise, the alignment of T-RFLP peaks between profiles, and the use of multivariate statistical methods to detect changes in the structure and composition of microbial communities due to spatial and temporal variation or treatment effects. The progress made in T-RFLP analysis of 16S rRNA and genes allows researchers to make methodological and statistical choices appropriate for the hypotheses of their studies.Ursel M. E. Schütte, Zaid Abdo, Stephen J. Bent, Conrad Shyu, Christopher J. Williams, Jacob D. Pierson, Larry J. Forne
    corecore