68 research outputs found

    DC current through a superconducting two-barrier system

    Full text link
    We analyze the influence of the structure within a SNS junction on the multiple Andreev resonances in the subgap I-V characteristics. Coherent interference processes and incoherent propagation in the normal region are considered. The detailed geometry of the normal region where the voltage drops in superconducting contacts can lead to observable effects in the conductance at low voltages.Comment: 11 pages, including 7 postscript file

    BtubA-BtubB Heterodimer Is an Essential Intermediate in Protofilament Assembly

    Get PDF
    BACKGROUND:BtubA and BtubB are two tubulin-like genes found in the bacterium Prosthecobacter. Our work and a previous crystal structure suggest that BtubB corresponds to alpha-tubulin and BtubA to beta-tubulin. A 1:1 mixture of the two proteins assembles into tubulin-like protofilaments, which further aggregate into pairs and bundles. The proteins also form a BtubA/B heterodimer, which appears to be a repeating subunit in the protofilament. METHODOLOGY/PRINCIPAL FINDINGS:We have designed point mutations to disrupt the longitudinal interfaces bonding subunits into protofilaments. The mutants are in two classes, within dimers and between dimers. We have characterized one mutant of each class for BtubA and BtubB. When mixed 1:1 with a wild type partner, none of the mutants were capable of assembly. An excess of between-dimer mutants could depolymerize preformed wild type polymers, while within-dimer mutants had no activity. CONCLUSIONS:An essential first step in assembly of BtubA + BtubB is formation of a heterodimer. An excess of between-dimer mutants depolymerize wild type BtubA/B by sequestering the partner wild type subunit into inactive dimers. Within-dimer mutants cannot form dimers and have no activity

    Josephson effect in double-barrier superconductor-ferromagnet junctions

    Full text link
    We study the Josephson effect in ballistic double-barrier SIFIS planar junctions, consisting of bulk superconductors (S), a clean metallic ferromagnet (F), and insulating interfaces (I). We solve the scattering problem based on the Bogoliubov--de Gennes equations and derive a general expression for the dc Josephson current, valid for arbitrary interfacial transparency and Fermi wave vectors mismatch (FWVM). We consider the coherent regime in which quasiparticle transmission resonances contribute significantly to the Andreev process. The Josephson current is calculated for various parameters of the junction, and the influence of both interfacial transparency and FWVM is analyzed. For thin layers of strong ferromagnet and finite interfacial transparency, we find that coherent (geometrical) oscillations of the maximum Josephson current are superimposed on the oscillations related to the crossover between 0 and π\pi states. For the same case we find that the temperature-induced 0−π0-\pi transition occurs if the junction is very close to the crossovers at zero temperature.Comment: 13 pages, 6 figure

    The C. elegans Opa1 Homologue EAT-3 Is Essential for Resistance to Free Radicals

    Get PDF
    The C. elegans eat-3 gene encodes a mitochondrial dynamin family member homologous to Opa1 in humans and Mgm1 in yeast. We find that mutations in the C. elegans eat-3 locus cause mitochondria to fragment in agreement with the mutant phenotypes observed in yeast and mammalian cells. Electron microscopy shows that the matrices of fragmented mitochondria in eat-3 mutants are divided by inner membrane septae, suggestive of a specific defect in fusion of the mitochondrial inner membrane. In addition, we find that C. elegans eat-3 mutant animals are smaller, grow slower, and have smaller broodsizes than C. elegans mutants with defects in other mitochondrial fission and fusion proteins. Although mammalian Opa1 is antiapoptotic, mutations in the canonical C. elegans cell death genes ced-3 and ced-4 do not suppress the slow growth and small broodsize phenotypes of eat-3 mutants. Instead, the phenotypes of eat-3 mutants are consistent with defects in oxidative phosphorylation. Moreover, eat-3 mutants are hypersensitive to paraquat, which promotes damage by free radicals, and they are sensitive to loss of the mitochondrial superoxide dismutase sod-2. We conclude that free radicals contribute to the pathology of C. elegans eat-3 mutants

    The role of the mitochondria and the endoplasmic reticulum contact sites in the development of the immune responses

    Get PDF
    Abstract Mitochondria and endoplasmic reticulum (ER) contact sites (MERCs) are dynamic modules enriched in subset of lipids and specialized proteins that determine their structure and functions. The MERCs regulate lipid transfer, autophagosome formation, mitochondrial fission, Ca2+ homeostasis and apoptosis. Since these functions are essential for cell biology, it is therefore not surprising that MERCs also play a critical role in organ physiology among which the immune system stands by its critical host defense function. This defense system must discriminate and tolerate host cells and beneficial commensal microorganisms while eliminating pathogenic ones in order to preserve normal homeostasis. To meet this goal, the immune system has two lines of defense. First, the fast acting but unspecific innate immune system relies on anatomical physical barriers and subsets of hematopoietically derived cells expressing germline-encoded receptors called pattern recognition receptors (PRR) recognizing conserved motifs on the pathogens. Second, the slower but very specific adaptive immune response is added to complement innate immunity. Adaptive immunity relies on another set of specialized cells, the lymphocytes, harboring receptors requiring somatic recombination to be expressed. Both innate and adaptive immune cells must be activated to phagocytose and process pathogens, migrate, proliferate, release soluble factors and destroy infected cells. Some of these functions are strongly dependent on lipid transfer, autophagosome formation, mitochondrial fission, and Ca2+ flux; this indicates that MERCs could regulate immunity
    • …
    corecore