816 research outputs found

    Remarks on Conserved Quantities and Entropy of BTZ Black Hole Solutions. Part I: the General Setting

    Full text link
    The BTZ stationary black hole solution is considered and its mass and angular momentum are calculated by means of Noether theorem. In particular, relative conserved quantities with respect to a suitably fixed background are discussed. Entropy is then computed in a geometric and macroscopic framework, so that it satisfies the first principle of thermodynamics. In order to compare this more general framework to the prescription by Wald et al. we construct the maximal extension of the BTZ horizon by means of Kruskal-like coordinates. A discussion about the different features of the two methods for computing entropy is finally developed.Comment: PlainTEX, 16 pages. Revised version 1.

    Universal field equations for metric-affine theories of gravity

    Get PDF
    We show that almost all metric--affine theories of gravity yield Einstein equations with a non--null cosmological constant Λ\Lambda. Under certain circumstances and for any dimension, it is also possible to incorporate a Weyl vector field WμW_\mu and therefore the presence of an anisotropy. The viability of these field equations is discussed in view of recent astrophysical observations.Comment: 13 pages. This is a copy of the published paper. We are posting it here because of the increasing interest in f(R) theories of gravit

    Conserved Quantities from the Equations of Motion (with applications to natural and gauge natural theories of gravitation)

    Full text link
    We present an alternative field theoretical approach to the definition of conserved quantities, based directly on the field equations content of a Lagrangian theory (in the standard framework of the Calculus of Variations in jet bundles). The contraction of the Euler-Lagrange equations with Lie derivatives of the dynamical fields allows one to derive a variational Lagrangian for any given set of Lagrangian equations. A two steps algorithmical procedure can be thence applied to the variational Lagrangian in order to produce a general expression for the variation of all quantities which are (covariantly) conserved along the given dynamics. As a concrete example we test this new formalism on Einstein's equations: well known and widely accepted formulae for the variation of the Hamiltonian and the variation of Energy for General Relativity are recovered. We also consider the Einstein-Cartan (Sciama-Kibble) theory in tetrad formalism and as a by-product we gain some new insight on the Kosmann lift in gauge natural theories, which arises when trying to restore naturality in a gauge natural variational Lagrangian.Comment: Latex file, 31 page

    The dynamical equivalence of modified gravity revisited

    Full text link
    We revisit the dynamical equivalence between different representations of vacuum modified gravity models in view of Legendre transformations. The equivalence is discussed for both bulk and boundary space, by including in our analysis the relevant Gibbons-Hawking terms. In the f(R) case, the Legendre transformed action coincides with the usual Einstein frame one. We then re-express the R+f(G) action, where G is the Gauss-Bonnet term, as a second order theory with a new set of field variables, four tensor fields and one scalar and study its dynamics. For completeness, we also calculate the conformal transformation of the full Jordan frame R+f(G) action. All the appropriate Gibbons-Hawking terms are calculated explicitly.Comment: 17 pages; v3: Revised version. New comments added in Sections 3 & 5. New results added in Section 6. Version to appear in Class. Quantum Gravit

    Boundary Conditions, Energies and Gravitational Heat in General Relativity (a Classical Analysis)

    Full text link
    The variation of the energy for a gravitational system is directly defined from the Hamiltonian field equations of General Relativity. When the variation of the energy is written in a covariant form it splits into two (covariant) contributions: one of them is the Komar energy, while the other is the so-called covariant ADM correction term. When specific boundary conditions are analyzed one sees that the Komar energy is related to the gravitational heat while the ADM correction term plays the role of the Helmholtz free energy. These properties allow to establish, inside a classical geometric framework, a formal analogy between gravitation and the laws governing the evolution of a thermodynamic system. The analogy applies to stationary spacetimes admitting multiple causal horizons as well as to AdS Taub-bolt solutions.Comment: Latex file, 31 pages; one reference and two comments added, misprints correcte

    Equilibrium hydrostatic equation and Newtonian limit of the singular f(R) gravity

    Get PDF
    We derive the equilibrium hydrostatic equation of a spherical star for any gravitational Lagrangian density of the form L=gf(R)L=\sqrt{-g}f(R). The Palatini variational principle for the Helmholtz Lagrangian in the Einstein gauge is used to obtain the field equations in this gauge. The equilibrium hydrostatic equation is obtained and is used to study the Newtonian limit for f(R)=Ra23Rf(R)=R-\frac{a^{2}}{3R}. The same procedure is carried out for the more generally case f(R)=R1n+2an+1Rnf(R)=R-\frac{1}{n+2}\frac{a^{n+1}}{R^{n}} giving a good Newtonian limit.Comment: Revised version, to appear in Classical and Quantum Gravity

    Gravitation, electromagnetism and cosmological constant in purely affine gravity

    Full text link
    The Ferraris-Kijowski purely affine Lagrangian for the electromagnetic field, that has the form of the Maxwell Lagrangian with the metric tensor replaced by the symmetrized Ricci tensor, is dynamically equivalent to the metric Einstein-Maxwell Lagrangian, except the zero-field limit, for which the metric tensor is not well-defined. This feature indicates that, for the Ferraris-Kijowski model to be physical, there must exist a background field that depends on the Ricci tensor. The simplest possibility, supported by recent astronomical observations, is the cosmological constant, generated in the purely affine formulation of gravity by the Eddington Lagrangian. In this paper we combine the electromagnetic field and the cosmological constant in the purely affine formulation. We show that the sum of the two affine (Eddington and Ferraris-Kijowski) Lagrangians is dynamically inequivalent to the sum of the analogous (Λ\LambdaCDM and Einstein-Maxwell) Lagrangians in the metric-affine/metric formulation. We also show that such a construction is valid, like the affine Einstein-Born-Infeld formulation, only for weak electromagnetic fields, on the order of the magnetic field in outer space of the Solar System. Therefore the purely affine formulation that combines gravity, electromagnetism and cosmological constant cannot be a simple sum of affine terms corresponding separately to these fields. A quite complicated form of the affine equivalent of the metric Einstein-Maxwell-Λ\Lambda Lagrangian suggests that Nature can be described by a simpler affine Lagrangian, leading to modifications of the Einstein-Maxwell-Λ\LambdaCDM theory for electromagnetic fields that contribute to the spacetime curvature on the same order as the cosmological constant.Comment: 17 pages, extended and combined with gr-qc/0612193; published versio

    Generalized Gravity and a Ghost

    Full text link
    We show that generalized gravity theories involving the curvature invariants of the Ricci tensor and the Riemann tensor as well as the Ricci scalar are equivalent to multi- scalar-tensor gravities with four derivatives terms. By expanding the action around a vacuum spacetime, the action is reduced to that of the Einstein gravity with four derivative terms, and consequently there appears a massive spin-2 ghost in such generalized gravity theories in addition to a massive spin-0 field.Comment: 8 pages, a reference adde

    STS/SCA/AmSECT clinical practice guidelines: Anticoagulation during cardiopulmonary bypass

    Get PDF
    © 2018 American Society of Extra-Corporeal Technology. All Rights Reserved. Despite more than a half century of safe cardio-pulmonary bypass (CPB), the evidence base surrounding the conduct of anticoagulation for CPB has not been organized into a succinct guideline. For this and other reasons, there is enormous practice variability relating to the use and dosing of heparin, monitoring heparin anticoagulation, reversal of anticoagulation, and the use of alternative anticoagulants. To address this and other gaps, the Society of Thoracic Surgeons (STS), the Society of Cardiovascular Anesthesiologists (SCA), and the American Society of Extracorporeal Technology (AmSECT) developed an Evidence Based Workgroup. This was a group of interdisciplinary professionals gathered together to summarize the evidence and create practice recommendations for various aspects of CPB. To date, anticoagulation practices in CPB have not been standardized in accordance with the evidence base. This clinical practice guideline was written with the intent to fill the evidence gap and to establish best practices in anticoagulation for CPB using the available evidence. To identify relevant evidence a systematic review was outlined and literature searches were conducted in PubMed® using standardized MeSH terms from the National Library of Medicine list of search terms. Search dates were inclusive of January 2000 to December 2015. The search yielded 833 abstracts which were reviewed by two independent reviewers. Once accepted into the full manuscript review stage, two members of the writing group evaluated each of 286 full papers for inclusion eligibility into the guideline document. Ninety-six manuscripts were included in the final review. In addition, 17 manuscripts published prior to 2000 were included to provide method, context, or additional supporting evidence for the recommendations as these papers were considered sentinel publications. Members of the writing group wrote and developed recommendations based on review of the articles obtained and achieved more than two thirds agreement on each recommendation. The quality of information for a given recommendation allowed assessment of the level of evidence as recommended by the AHA/ACCF Task Force on Practice Guidelines. Recommendations were written in the three following areas 1) Heparin dosing and monitoring for initiation and maintenance of CPB, 2) Heparin contraindications and heparin alternatives, 3) Reversal of anticoagulation during cardiac operations. It is hoped that this guideline will serve as a resource and will stimulate investigators to conduct more research and expand upon the evidence base on the topic of anticoagulation for CPB
    corecore