12 research outputs found

    Wigner crystallization in Na(3)Cu(2)O(4) and Na(8)Cu(5)O(10) chain compounds

    Full text link
    We report the synthesis of novel edge-sharing chain systems Na(3)Cu(2)O(4) and Na(8)Cu(5)O(10), which form insulating states with commensurate charge order. We identify these systems as one-dimensional Wigner lattices, where the charge order is determined by long-range Coulomb interaction and the number of holes in the d-shell of Cu. Our interpretation is supported by X-ray structure data as well as by an analysis of magnetic susceptibility and specific heat data. Remarkably, due to large second neighbor Cu-Cu hopping, these systems allow for a distinction between the (classical) Wigner lattice and the 4k_F charge-density wave of quantum mechanical origin.Comment: 4 pages, 4 figure

    Microstructural Observations in (Na 0.5

    No full text

    A new and simple route to alkali metal oxometalates.

    No full text

    NO3− anions can act as Lewis acid in the solid state

    Get PDF
    Identifying electron donating and accepting moieties is crucial to understanding molecular aggregation, which is of pivotal significance to biology. Anions such as NO3− are typical electron donors. However, computations predict that the charge distribution of NO3− is anisotropic and minimal on nitrogen. Here we show that when the nitrate’s charge is sufficiently dampened by resonating over a larger area, a Lewis acidic site emerges on nitrogen that can interact favourably with electron rich partners. Surveys of the Cambridge Structural Database and Protein Data Bank reveal geometric preferences of some oxygen and sulfur containing entities around a nitrate anion that are consistent with this ‘π-hole bonding’ geometry. Computations reveal donor–acceptor orbital interactions that confirm the counterintuitive Lewis π–acidity of nitrate

    CD8+ T cell-mediated endotheliopathy is a targetable mechanism of neuro-inflammation in Susac syndrome

    Get PDF
    International audienceNeuroinflammation is often associated with blood-brain-barrier dysfunction, which contributes to neurological tissue damage. Here, we reveal the pathophysiology of Susac syndrome (SuS), an enigmatic neuroinflammatory disease with central nervous system (CNS) endotheliopathy. By investigating immune cells from the blood, cerebrospinal fluid, and CNS of SuS patients, we demonstrate oligoclonal expansion of terminally differentiated activated cytotoxic CD8+ T cells (CTLs). Neuropathological data derived from both SuS patients and a newly-developed transgenic mouse model recapitulating the disease indicate that CTLs adhere to CNS microvessels in distinct areas and polarize granzyme B, which most likely results in the observed endothelial cell injury and microhemorrhages. Blocking T-cell adhesion by anti-α4 integrin-intervention ameliorates the disease in the preclinical model. Similarly, disease severity decreases in four SuS patients treated with natalizumab along with other therapy. Our study identifies CD8+ T-cell-mediated endotheliopathy as a key disease mechanism in SuS and highlights therapeutic opportunities.disease severity decreases in four SuS patients treated with natalizumab along with other therapy. Our study identifies CD8+ T-cell-mediated endotheliopathy as a key disease mechanism in SuS and highlights therapeutic opportunities
    corecore