2,460 research outputs found

    Composing Control Barrier Functions for Complex Safety Specifications

    Full text link
    The increasing complexity of control systems necessitates control laws that guarantee safety w.r.t. complex combinations of constraints. In this letter, we propose a framework to describe compositional safety specifications with control barrier functions (CBFs). The specifications are formulated as Boolean compositions of state constraints, and we propose an algorithmic way to create a single continuously differentiable CBF that captures these constraints and enables safety-critical control. We describe the properties of the proposed CBF, and we demonstrate its efficacy by numerical simulations.Comment: Submitted to the IEEE Control System Letters (L-CSS) and the 2024 American Control Conference (ACC). 6 pages, 3 figure

    Using the Change Manager Model for the Hippocampal System to Predict Connectivity and Neurophysiological Parameters in the Perirhinal Cortex

    Get PDF
    Theoretical arguments demonstrate that practical considerations, including the needs to limit physiological resources and to learn without interference with prior learning, severely constrain the anatomical architecture of the brain. These arguments identify the hippocampal system as the change manager for the cortex, with the role of selecting the most appropriate locations for cortical receptive field changes at each point in time and driving those changes. This role results in the hippocampal system recording the identities of groups of cortical receptive fields that changed at the same time. These types of records can also be used to reactivate the receptive fields active during individual unique past events, providing mechanisms for episodic memory retrieval. Our theoretical arguments identify the perirhinal cortex as one important focal point both for driving changes and for recording and retrieving episodic memories. The retrieval of episodic memories must not drive unnecessary receptive field changes, and this consideration places strong constraints on neuron properties and connectivity within and between the perirhinal cortex and regular cortex. Hence the model predicts a number of such properties and connectivity. Experimental test of these falsifiable predictions would clarify how change is managed in the cortex and how episodic memories are retrieved

    On the Safety of Connected Cruise Control: Analysis and Synthesis with Control Barrier Functions

    Full text link
    Connected automated vehicles have shown great potential to improve the efficiency of transportation systems in terms of passenger comfort, fuel economy, stability of driving behavior and mitigation of traffic congestions. Yet, to deploy these vehicles and leverage their benefits, the underlying algorithms must ensure their safe operation. In this paper, we address the safety of connected cruise control strategies for longitudinal car following using control barrier function (CBF) theory. In particular, we consider various safety measures such as minimum distance, time headway and time to conflict, and provide a formal analysis of these measures through the lens of CBFs. Additionally, motivated by how stability charts facilitate stable controller design, we derive safety charts for existing connected cruise controllers to identify safe choices of controller parameters. Finally, we combine the analysis of safety measures and the corresponding stability charts to synthesize safety-critical connected cruise controllers using CBFs. We verify our theoretical results by numerical simulations.Comment: Accepted to the 62nd IEEE Conference on Decision and Control. 6 pages, 5 figure

    Frailty in older people living with HIV: current status and clinical management

    Get PDF
    This paper will update care providers on the clinical and scientific aspects of frailty which affects an increasing proportion of older people living with HIV (PLWH). The successful use of combination antiretroviral therapy has improved long-term survival in PLWH. This has increased the proportion of PLWH older than 50 to more than 50% of the HIV population. Concurrently, there has been an increase in the premature development of age-related comorbidities as well as geriatric syndromes, especially frailty, which affects an important minority of older PLWH. As the number of frail older PLWH increases, this will have an important impact on their health care delivery. Frailty negatively affects a PLWH's clinical status, and increases their risk of adverse outcomes, impacting quality of life and health-span. The biologic constructs underlying the development of frailty integrate interrelated pathways which are affected by the process of aging and those factors which accelerate aging. The negative impact of sarcopenia in maintaining musculoskeletal integrity and thereby functional status may represent a bidirectional interaction with frailty in PLWH. Furthermore, there is a growing body of literature that frailty states may be transitional. The recognition and management of related risk factors will help to mitigate the development of frailty. The application of interdisciplinary geriatric management principles to the care of older PLWH allows reliable screening and care practices for frailty. Insight into frailty, increasingly recognized as an important marker of biologic age, will help to understand the diversity of clinical status occurring in PLWH, which therefore represents a fundamentally new and important aspect to be evaluated in their health care

    Verifying Safe Transitions between Dynamic Motion Primitives on Legged Robots

    Full text link
    Functional autonomous systems often realize complex tasks by utilizing state machines comprised of discrete primitive behaviors and transitions between these behaviors. This architecture has been widely studied in the context of quasi-static and dynamics-independent systems. However, applications of this concept to dynamical systems are relatively sparse, despite extensive research on individual dynamic primitive behaviors, which we refer to as "motion primitives." This paper formalizes a process to determine dynamic-state aware conditions for transitions between motion primitives in the context of safety. The result is framed as a "motion primitive graph" that can be traversed by standard graph search and planning algorithms to realize functional autonomy. To demonstrate this framework, dynamic motion primitives -- including standing up, walking, and jumping -- and the transitions between these behaviors are experimentally realized on a quadrupedal robot
    • …
    corecore