2 research outputs found

    On the use of dense SNP marker data for the identification of distant relative pairs.

    No full text
    There has been recent interest in the exploitation of readily available dense genome scan marker data for the identification of relatives. However, there are conflicting findings on how informative these data are in practical situations and, in particular, sets of thinned markers are often used with no concrete justification for the chosen spacing. We explore the potential usefulness of dense single nucleotide polymorphism (SNP) arrays for this application with a focus on inferring distant relative pairs. We distinguish between relationship estimation, as defined by a pedigree connecting the two individuals of interest, and estimation of general relatedness as would be provided by a kinship coefficient or a coefficient of relatedness. Since our primary interest is in the former case, we adopt a pedigree likelihood approach. We consider the effect of additional SNPs and data on an additional typed relative, together with choice of that relative, on relationship inference. We also consider the effect of linkage disequilibrium. When overall relatedness, rather than the specific relationship, would suffice, we propose an approximate approach that is easy to implement and appears to compete well with a popular moment-based estimator and a recent maximum likelihood approach based on chromosomal sharing. We conclude that denser marker data are more informative for distant relatives. However, linkage disequilibrium cannot be ignored and will be the main limiting factor for applications to real data

    Genetic associations at 53 loci highlight cell types and biological pathways relevant for kidney function

    No full text
    Reduced glomerular filtration rate defines chronic kidney disease and is associated with cardiovascular and all-cause mortality. We conducted a meta-analysis of genome-wide association studies for estimated glomerular filtration rate (eGFR), combining data across 133,413 individuals with replication in up to 42,166 individuals. We identify 24 new and confirm 29 previously identified loci. Of these 53 loci, 19 associate with eGFR among individuals with diabetes. Using bioinformatics, we show that identified genes at eGFR loci are enriched for expression in kidney tissues and in pathways relevant for kidney development and transmembrane transporter activity, kidney structure, and regulation of glucose metabolism. Chromatin state mapping and DNase I hypersensitivity analyses across adult tissues demonstrate preferential mapping of associated variants to regulatory regions in kidney but not extra-renal tissues. These findings suggest that genetic determinants of eGFR are mediated largely through direct effects within the kidney and highlight important cell types and biological pathways
    corecore