46,110 research outputs found

    Complete gradient-LC-ESI system on a chip for protein analysis

    Get PDF
    This paper presents the first fully integrated gradient-elution liquid chromatography-electrospray ionization (LC-ESI) system on a chip. This chip integrates a pair of high-pressure gradient pumps, a sample injection pump, a passive mixer, a packed separation column, and an ESI nozzle. We also present the successful on-chip separation of protein digests by reverse phase (RP)-LC coupled with on-line mass spectrometer (MS) analysis

    A system for learning statistical motion patterns

    Get PDF
    Analysis of motion patterns is an effective approach for anomaly detection and behavior prediction. Current approaches for the analysis of motion patterns depend on known scenes, where objects move in predefined ways. It is highly desirable to automatically construct object motion patterns which reflect the knowledge of the scene. In this paper, we present a system for automatically learning motion patterns for anomaly detection and behavior prediction based on a proposed algorithm for robustly tracking multiple objects. In the tracking algorithm, foreground pixels are clustered using a fast accurate fuzzy k-means algorithm. Growing and prediction of the cluster centroids of foreground pixels ensure that each cluster centroid is associated with a moving object in the scene. In the algorithm for learning motion patterns, trajectories are clustered hierarchically using spatial and temporal information and then each motion pattern is represented with a chain of Gaussian distributions. Based on the learned statistical motion patterns, statistical methods are used to detect anomalies and predict behaviors. Our system is tested using image sequences acquired, respectively, from a crowded real traffic scene and a model traffic scene. Experimental results show the robustness of the tracking algorithm, the efficiency of the algorithm for learning motion patterns, and the encouraging performance of algorithms for anomaly detection and behavior prediction

    A system for learning statistical motion patterns

    Get PDF
    Analysis of motion patterns is an effective approach for anomaly detection and behavior prediction. Current approaches for the analysis of motion patterns depend on known scenes, where objects move in predefined ways. It is highly desirable to automatically construct object motion patterns which reflect the knowledge of the scene. In this paper, we present a system for automatically learning motion patterns for anomaly detection and behavior prediction based on a proposed algorithm for robustly tracking multiple objects. In the tracking algorithm, foreground pixels are clustered using a fast accurate fuzzy k-means algorithm. Growing and prediction of the cluster centroids of foreground pixels ensure that each cluster centroid is associated with a moving object in the scene. In the algorithm for learning motion patterns, trajectories are clustered hierarchically using spatial and temporal information and then each motion pattern is represented with a chain of Gaussian distributions. Based on the learned statistical motion patterns, statistical methods are used to detect anomalies and predict behaviors. Our system is tested using image sequences acquired, respectively, from a crowded real traffic scene and a model traffic scene. Experimental results show the robustness of the tracking algorithm, the efficiency of the algorithm for learning motion patterns, and the encouraging performance of algorithms for anomaly detection and behavior prediction

    Modeling Pressure-Ionization of Hydrogen in the Context of Astrophysics

    Get PDF
    The recent development of techniques for laser-driven shock compression of hydrogen has opened the door to the experimental determination of its behavior under conditions characteristic of stellar and planetary interiors. The new data probe the equation of state (EOS) of dense hydrogen in the complex regime of pressure ionization. The structure and evolution of dense astrophysical bodies depend on whether the pressure ionization of hydrogen occurs continuously or through a ``plasma phase transition'' (PPT) between a molecular state and a plasma state. For the first time, the new experiments constrain predictions for the PPT. We show here that the EOS model developed by Saumon and Chabrier can successfully account for the data, and we propose an experiment that should provide a definitive test of the predicted PPT of hydrogen. The usefulness of the chemical picture for computing astrophysical EOS and in modeling pressure ionization is discussed.Comment: 16 pages + 4 figures, to appear in High Pressure Researc

    Integrated power passives

    Get PDF
    A multi-layer film-stack and method for forming the multilayer film-stack is given where a series of alternating layers of conducting and dielectric materials are deposited such that the conducting layers can be selectively addressed. The use of the method to form integratable high capacitance density capacitors and complete the formation of an integrated power system-on-a-chip device including transistors, conductors, inductors, and capacitors is also given

    Scalable Parallel Numerical CSP Solver

    Full text link
    We present a parallel solver for numerical constraint satisfaction problems (NCSPs) that can scale on a number of cores. Our proposed method runs worker solvers on the available cores and simultaneously the workers cooperate for the search space distribution and balancing. In the experiments, we attained up to 119-fold speedup using 256 cores of a parallel computer.Comment: The final publication is available at Springe

    Metal-insulator transition in a multilayer system with a strong magnetic field

    Full text link
    We study the Anderson localization in a weakly coupled multilayer system with a strong magnetic field perpendicular to the layers. The phase diagram of 1/3 flux quanta per plaquette is obtained. The phase diagram shows that a three-dimensional quantum Hall effect phase exists for a weak on-site disorder. For intermediate disorder, the system has insulating and normal metallic phases separated by a mobility edge. At an even larger disorder, all states are localized and the system is an insulator. The critical exponent of the localization length is found to be ν=1.57±0.10\nu=1.57\pm0.10.Comment: Latex file, 3 figure
    corecore