9,151 research outputs found

    The Evolution of Optical Depth in the Ly-alpha Forest: Evidence Against Reionization at z~6

    Get PDF
    We examine the evolution of the IGM Ly-alpha optical depth distribution using the transmitted flux probability distribution function (PDF) in a sample of 63 QSOs spanning absorption redshifts 1.7 < z < 5.8. The data are compared to two theoretical optical depth distributions: a model distribution based on the density distribution of Miralda-Escude et al. (2000) (MHR00), and a lognormal distribution. We assume a uniform UV background and an isothermal IGM for the MHR00 model, as has been done in previous works. Under these assumptions, the MHR00 model produces poor fits to the observed flux PDFs at redshifts where the optical depth distribution is well sampled, unless large continuum corrections are applied. However, the lognormal optical depth distribution fits the data at all redshifts with only minor continuum adjustments. We use a simple parametrization for the evolution of the lognormal parameters to calculate the expected mean transmitted flux at z > 5.4. The lognormal optical depth distribution predicts the observed Ly-alpha and Ly-beta effective optical depths at z > 5.7 while simultaneously fitting the mean transmitted flux down to z = 1.6. If the evolution of the lognormal distribution at z < 5 reflects a slowly-evolving density field, temperature, and UV background, then no sudden change in the IGM at z ~ 6 due to late reionization appears necessary. We have used the lognormal optical depth distribution without any assumption about the underlying density field. If the MHR00 density distribution is correct, then a non-uniform UV background and/or IGM temperature may be required to produce the correct flux PDF. We find that an inverse temperature-density relation greatly improves the PDF fits, but with a large scatter in the equation of state index. [Abridged]Comment: 45 pages, 16 figures, submitted to Ap

    Standard model plethystics

    Get PDF
    We study the vacuum geometry prescribed by the gauge invariant operators of the minimal supersymmetric standard model via the plethystic program. This is achieved by using several tricks to perform the highly computationally challenging Molien-Weyl integral, from which we extract the Hilbert series, encoding the invariants of the geometry at all degrees. The fully refined Hilbert series is presented as the explicit sum of 1422 rational functions. We found a good choice of weights to unrefine the Hilbert series into a rational function of a single variable, from which we can read off the dimension and the degree of the vacuum moduli space of the minimal supersymmetric standard model gauge invariants. All data in Mathematica format are also presented

    Efficient Phase-Encoding Quantum Key Generation with Narrow-Band Single Photons

    Full text link
    We propose an efficient phase-encoding quantum secret key generation scheme with heralded narrow-band single photons. The key information is carried by the phase modulation directly on the single-photon temporal waveform without using any passive beam splitters or optical switches. We show that, when the technique is applied to the conventional fiber-based phase-encoding BB84 and differential phase shift (DPS) quantum key distribution schemes, the key generation efficiencies can be improved by a factor of 2 and 3, respectively. For N(>3)-period DPS systems, the key generation efficiency can be improved by a factor of N. The technique is suitable for quantum memory-based long-distance fiber communication system.Comment: 5 pages, 5 figure

    Electrostatic colloid-membrane complexation

    Full text link
    We investigate numerically and on the scaling level the adsorption of a charged colloid on an oppositely charged flexible membrane. We show that the long ranged character of the electrostatic interaction leads to a wrapping reentrance of the complex as the salt concentration is varied. The membrane wrapping depends on the size of the colloid and on the salt concentration and only for intermediate salt concentration and colloid sizes we find full wrapping. From the scaling model we derive simple relations for the phase boundaries between the different states of the complex, which agree well with the numerical minimization of the free energy.Comment: 7 page, 11 figure

    Intrinsic Size OF Sgr A*: 72 Schwarzschild Radii

    Get PDF
    Recent proper motion studies of stars at the very center of the Galaxy strongly suggest that Sagittarius (Sgr) A*, the compact nonthermal radio source at the Galactic Center, is a 2.5 million solar mass black hole. By means of near-simultaneous multi-wavelength Very Long Baseline Array measurements, we determine for the first time the intrinsic size and shape of Sgr A* to be 72 Rsc by < 20 Rsc, with the major axis oriented essentially north-south, where Rsc (= 7.5 x 10^{11} cm) is the Schwarzschild radius for a 2.5 million solar mass black hole. Contrary to previous expectation that the intrinsic structure of Sgr A* is observable only at wavelengths shorter than 1 mm, we can discern the intrinsic source size at 7 mm because (1) the scattering size along the minor axis is half that along the major axis, and (2) the near simultaneous multi-wavelength mapping of Sgr A* with the same interferometer makes it possible to extrapolate precisely the minor axis scattering angle at 7 mm. The intrinsic size and shape place direct constraints on the various emission models for Sgr A*. In particular, the advection dominated accretion flow model may have to incorporate a radio jet in order to account for the structure of Sgr A*.Comment: 15 pages including 2 ps figures and 1 table, to appear in ApJ Letter

    Relating Quantum Information to Charged Black Holes

    Full text link
    Quantum non-cloning theorem and a thought experiment are discussed for charged black holes whose global structure exhibits an event and a Cauchy horizon. We take Reissner-Norstr\"{o}m black holes and two-dimensional dilaton black holes as concrete examples. The results show that the quantum non-cloning theorem and the black hole complementarity are far from consistent inside the inner horizon. The relevance of this work to non-local measurements is briefly discussed.Comment: 14 pages, 2 figure

    Nonlinear ac response of anisotropic composites

    Full text link
    When a suspension consisting of dielectric particles having nonlinear characteristics is subjected to a sinusoidal (ac) field, the electrical response will in general consist of ac fields at frequencies of the higher-order harmonics. These ac responses will also be anisotropic. In this work, a self-consistent formalism has been employed to compute the induced dipole moment for suspensions in which the suspended particles have nonlinear characteristics, in an attempt to investigate the anisotropy in the ac response. The results showed that the harmonics of the induced dipole moment and the local electric field are both increased as the anisotropy increases for the longitudinal field case, while the harmonics are decreased as the anisotropy increases for the transverse field case. These results are qualitatively understood with the spectral representation. Thus, by measuring the ac responses both parallel and perpendicular to the uniaxial anisotropic axis of the field-induced structures, it is possible to perform a real-time monitoring of the field-induced aggregation process.Comment: 14 pages and 4 eps figure

    Constraining the Lifetime of Quasars from their Spatial Clustering

    Full text link
    The lifetime t_Q of the luminous phase of quasars is constrained by current observations to be between 10^6 and 10^8 years, but is otherwise unkown. We model the quasar luminosity function in detail in the optical and X-ray bands using the Press-Schechter formalism, and show that the expected clustering of quasars depends strongly on their assumed lifetime. We quantify this dependence, and find that existing measurements of the correlation length of quasars are consistent with the range 10^6 < t_Q < 10^8 years. We then show that future measurements of the power spectrum of quasars out to z=3, from the 2dF or Sloan Digital Sky Survey, can significantly improve this constraint, and in principle allow a precise determination of t_Q. We estimate the systematic errors introduced by uncertainties in the modeling of the quasar-halo relationship, as well as by the possible existence of obscured quasars.Comment: ApJ, in press (emulateapj

    Signals of neutralinos and charginos from gauge boson fusion at the CERN Large Hadron Collider

    Full text link
    We point out that interesting signals of the non-strongly interacting sector of the supersymmetric standard model arise from the production of charginos and neutralinos via vector boson fusion (VBF) at the Large Hadron Collider (LHC). In particular, if R-parity is violated, the hadronically quiet signals of charginos and neutralinos through direct production get considerably suppressed. We show that in such cases, the VBF channel can be useful in identifying this sector through clean and background-free final states.Comment: 10 pages Latex, 8 figures, minor changes in text and few references added, to be published in Phys. Rev.

    Observing two dark accelerators around the Galactic Centre with Fermi Large Area Telescope

    Get PDF
    We report the results from a detailed γ−\gamma-ray investigation in the field of two "dark accelerators", HESS J1745-303 and HESS J1741-302, with 6.96.9 years of data obtained by the Fermi Large Area Telescope. For HESS J1745-303, we found that its MeV-GeV emission is mainly originated from the "Region A" of the TeV feature. Its γ−\gamma-ray spectrum can be modeled with a single power-law with a photon index of Γ∼2.5\Gamma\sim2.5 from few hundreds MeV to TeV. Moreover, an elongated feature, which extends from "Region A" toward northwest for ∼1.3∘\sim1.3^{\circ}, is discovered for the first time. The orientation of this feature is similar to that of a large scale atomic/molecular gas distribution. For HESS J1741-302, our analysis does not yield any MeV-GeV counterpart for this unidentified TeV source. On the other hand, we have detected a new point source, Fermi J1740.1-3013, serendipitously. Its spectrum is apparently curved which resembles that of a γ−\gamma-ray pulsar. This makes it possibly associated with PSR B1737-20 or PSR J1739-3023.Comment: 11 pages, 7 figures, 2 tables, accepted for publication in MNRA
    • …
    corecore