14,995 research outputs found

    Hawking radiation from decoherence

    Get PDF
    It is argued that the thermal nature of Hawking radiation arises solely due to decoherence. Thereby any information-loss paradox is avoided because for closed systems pure states remain pure. The discussion is performed for a massless scalar field in the background of a Schwarzschild black hole, but the arguments should hold in general. The result is also compared to and contrasted with the situation in inflationary cosmology.Comment: 6 pages, to appear in Class. Quantum Gra

    Prospects of Detecting Baryon and Quark Superfluidity from Cooling Neutron Stars

    Get PDF
    Baryon and quark superfluidity in the cooling of neutron stars are investigated. Observations could constrain combinations of the neutron or Lambda-hyperon pairing gaps and the star's mass. However, in a hybrid star with a mixed phase of hadrons and quarks, quark gaps larger than a few tenths of an MeV render quark matter virtually invisible for cooling. If the quark gap is smaller, quark superfluidity could be important, but its effects will be nearly impossible to distinguish from those of other baryonic constituents.Comment: 4 pages, 3 ps figures, uses RevTex(aps,prl). Submitted to Phys. Rev. Let

    How Fast Does Information Leak out from a Black Hole?

    Full text link
    Hawking's radiance, even as computed without account of backreaction, departs from blackbody form due to the mode dependence of the barrier penetration factor. Thus the radiation is not the maximal entropy radiation for given energy. By comparing estimates of the actual entropy emission rate with the maximal entropy rate for the given power, and using standard ideas from communication theory, we set an upper bound on the permitted information outflow rate. This is several times the rates of black hole entropy decrease or radiation entropy production. Thus, if subtle quantum effects not heretofore accounted for code information in the radiance, the information that was thought to be irreparably lost down the black hole may gradually leak back out from the black hole environs over the full duration of the hole's evaporation.Comment: 8 pages, plain TeX, UCSBTH-93-0

    Black Hole Motion in Entropic Reformulation of General Relativity

    Full text link
    We consider a system of black holes -- a simplest substitute of a system of point particles in the mechanics of general relativity -- and try to describe their motion with the help of entropic action: a sum of the areas of black hole horizons. We demonstrate that such description is indeed consistent with the Newton's laws of motion and gravity, modulo numerical coefficients, which coincide but seem different from unity. Since a large part of the modern discussion of entropic reformulation of general relativity is actually based on dimensional considerations, for making a next step it is crucially important to modify the argument, so that these dimensionless parameters acquire correct values.Comment: 6 page

    An experimental investigation of two large annular diffusers with swirling and distorted inflow

    Get PDF
    Two annular diffusers downstream of a nacelle-mounted fan were tested for aerodynamic performance, measured in terms of two static pressure recovery parameters (one near the diffuser exit plane and one about three diameters downstream in the settling duct) in the presence of several inflow conditions. The two diffusers each had an inlet diameter of 1.84 m, an area ratio of 2.3, and an equivalent cone angle of 11.5, but were distinguished by centerbodies of different lengths. The dependence of diffuser performance on various combinations of swirling, radially distorted, and/or azimuthally distorted inflow was examined. Swirling flow and distortions in the axial velocity profile in the annulus upstream of the diffuser inlet were caused by the intrinsic flow patterns downstream of a fan in a duct and by artificial intensification of the distortions. Azimuthal distortions or defects were generated by the addition of four artificial devices (screens and fences). Pressure recovery data indicated beneficial effects of both radial distortion (for a limited range of distortion levels) and inflow swirl. Small amounts of azimuthal distortion created by the artificial devices produced only small effects on diffuser performance. A large artificial distortion device was required to produce enough azimuthal flow distortion to significantly degrade the diffuser static pressure recovery

    Information in Black Hole Radiation

    Get PDF
    If black hole formation and evaporation can be described by an SS matrix, information would be expected to come out in black hole radiation. An estimate shows that it may come out initially so slowly, or else be so spread out, that it would never show up in an analysis perturbative in MPlanck/MM_{Planck}/M, or in 1/N for two-dimensional dilatonic black holes with a large number NN of minimally coupled scalar fields.Comment: 12 pages, 1 PostScript figure, LaTeX, Alberta-Thy-24-93 (In response to Phys. Rev. Lett. referees' comments, the connection between expansions in inverse mass and in 1/N are spelled out, and a figure is added. An argument against perturbatively predicting even late-time information is also provided, as well as various minor changes.

    Quark matter in compact stars?

    Full text link
    Ozel, in a recent reanalysis of EXO 0748-676 observational data (astro-ph/0605106), concluded that quark matter probably does not exist in the center of compact stars. We show that the data is actually consistent with the presence of quark matter in compact stars.Comment: 4 pages, LaTeX; New title and overall rewrite to reflect version published in Nature. Conclusions unchange
    • …
    corecore