578 research outputs found

    Magnetic-Field-Induced Hybridization of Electron Subbands in a Coupled Double Quantum Well

    Full text link
    We employ a magnetocapacitance technique to study the spectrum of the soft two-subband (or double-layer) electron system in a parabolic quantum well with a narrow tunnel barrier in the centre. In this system unbalanced by gate depletion, at temperatures T\agt 30 mK we observe two sets of quantum oscillations: one originates from the upper electron subband in the closer-to-the-gate part of the well and the other indicates the existence of common gaps in the spectrum at integer fillings. For the lowest filling factors ν=1\nu=1 and ν=2\nu=2, both the common gap presence down to the point of one- to two-subband transition and their non-trivial magnetic field dependences point to magnetic-field-induced hybridization of electron subbands.Comment: Major changes, added one more figure, the latest version to be published in JETP Let

    Topological Phase Transition in the ν=2/3\nu=2/3 Quantum Hall Effect

    Full text link
    The double layer ν=2/3\nu=2/3 fractional quantum Hall system is studied using the edge state formalism and finite-size diagonalization subject to periodic boundary conditions. Transitions between three different ground states are observed as the separation as well as the tunneling between the two layers is varied. Experimental consequences are discussed.Comment: 11 pages, REVTEX v3.0, 7 figure

    Quantum Hall effect in single wide quantum wells

    Full text link
    We study the quantum Hall states in the lowest Landau level for a single wide quantum well. Due to a separation of charges to opposite sides of the well, a single wide well can be modelled as an effective two level system. We provide numerical evidence of the existence of a phase transition from an incompressible to a compressible state as the electron density is increased for specific well width. Our numerical results show a critical electron density which depends on well width, beyond which a transition incompressible double layer quantum Hall state to a mono-layer compressible state occurs. We also calculate the related phase boundary corresponding to destruction of the collective mode energy gap. We show that the effective tunneling term and the interlayer separation are both renormalised by the strong magnetic field. We also exploite the local density functional techniques in the presence of strong magnetic field at ν=1\nu=1 to calculate renormalized ΔSAS\Delta_{SAS}. The numerical results shows good agreement between many-body calculations and local density functional techniques in the presence of a strong magnetic field at ν=1\nu=1. we also discuss implications of this work on the ν=1/2\nu=1/2 incompressible state observed in SWQW.Comment: 30 pages, 7 figures (figures are not included

    Critical Phenomena in Neutron Stars I: Linearly Unstable Nonrotating Models

    Full text link
    We consider the evolution in full general relativity of a family of linearly unstable isolated spherical neutron stars under the effects of very small, perturbations as induced by the truncation error. Using a simple ideal-fluid equation of state we find that this system exhibits a type-I critical behaviour, thus confirming the conclusions reached by Liebling et al. [1] for rotating magnetized stars. Exploiting the relative simplicity of our system, we are able carry out a more in-depth study providing solid evidences of the criticality of this phenomenon and also to give a simple interpretation of the putative critical solution as a spherical solution with the unstable mode being the fundamental F-mode. Hence for any choice of the polytropic constant, the critical solution will distinguish the set of subcritical models migrating to the stable branch of the models of equilibrium from the set of subcritical models collapsing to a black hole. Finally, we study how the dynamics changes when the numerically perturbation is replaced by a finite-size, resolution independent velocity perturbation and show that in such cases a nearly-critical solution can be changed into either a sub or supercritical. The work reported here also lays the basis for the analysis carried in a companion paper, where the critical behaviour in the the head-on collision of two neutron stars is instead considered [2].Comment: 15 pages, 9 figure

    Composite Fermion Pairing in Bilayer Quantum Hall Systems

    Full text link
    We derive the effective Hamiltonian for the composite fermion in double-layer quantum Hall systems with inter-layer tunneling at total Landau-level filling factor ν=1/m\nu=1/m, where mm is an integer. We find that the ground state is the triplet p-wave BCS pairing state of the composite fermions. At ν=1/2\nu=1/2, the ground state of the system evolves from the Halperin (3,3,1)(3,3,1)-state toward the Pfaffian-state with increasing the tunneling amplitude. On the other hand, at ν=1\nu=1, the pairing state is uniquely determined independent of tunneling amplitude.Comment: 13 pages, 2 figure

    Finding Apparent Horizons in Dynamic 3D Numerical Spacetimes

    Get PDF
    We have developed a general method for finding apparent horizons in 3D numerical relativity. Instead of solving for the partial differential equation describing the location of the apparent horizons, we expand the closed 2D surfaces in terms of symmetric trace--free tensors and solve for the expansion coefficients using a minimization procedure. Our method is applied to a number of different spacetimes, including numerically constructed spacetimes containing highly distorted axisymmetric black holes in spherical coordinates, and 3D rotating, and colliding black holes in Cartesian coordinates.Comment: 19 pages, 13 figures, LaTex, to appear in Phys. Rev. D. Minor changes mad

    Wave Propagation in Gravitational Systems: Completeness of Quasinormal Modes

    Get PDF
    The dynamics of relativistic stars and black holes are often studied in terms of the quasinormal modes (QNM's) of the Klein-Gordon (KG) equation with different effective potentials V(x)V(x). In this paper we present a systematic study of the relation between the structure of the QNM's of the KG equation and the form of V(x)V(x). In particular, we determine the requirements on V(x)V(x) in order for the QNM's to form complete sets, and discuss in what sense they form complete sets. Among other implications, this study opens up the possibility of using QNM expansions to analyse the behavior of waves in relativistic systems, even for systems whose QNM's do {\it not} form a complete set. For such systems, we show that a complete set of QNM's can often be obtained by introducing an infinitesimal change in the effective potential

    Electromagnetic characteristics and effective gauge theory of double-layer quantum Hall systems

    Full text link
    The electromagnetic characteristics of double-layer quantum Hall systems are studied, with projection to the lowest Landau level taken into account and intra-Landau-level collective excitations treated in the single-mode approximation. It is pointed out that dipole-active excitations, both elementary and collective, govern the long-wavelength features of quantum Hall systems. In particular, the presence of the dipole-active interlayer out-of-phase collective excitations, inherent to double-layer systems, modifies the leading O(k) and O(k^{2}) long-wavelength characteristics (i.e., the transport properties and characteristic scale) of the double-layer quantum Hall states substantially. We apply bosonization techniques and construct from such electromagnetic characteristics an effective theory, which consists of three vector fields representing the three dipole-active modes, one interlayer collective mode and two inter-Landau-level cyclotron modes. This effective theory properly incorporates the spectrum of collective excitations on the right scale of the Coulomb energy and, in addition, accommodates the favorable transport properties of the standard Chern-Simons theories.Comment: 10 pages, Revtex, sec. II slightly shortened, to appear in Phys. Rev.
    corecore