4,567 research outputs found
A Simulation Study of Spectral Cerenkov Luminescence Imaging for Tumour Margin Estimation
Breast cancer is the most common cancer in women in the world. Breast-conserving surgery (BCS) is a standard surgical treatment for breast cancer with the key objective of removing breast tissue, maintaining a negative surgical margin and providing a good cosmetic outcome. A positive surgical margin, meaning the presence of cancerous tissues on the surface of the breast specimen after surgery, is associated with local recurrence after therapy. In this study, we investigate a new imaging modality based on Cerenkov luminescence imaging (CLI) for the purpose of detecting positive surgical margins during BCS. We develop Monte Carlo (MC) simulations using the Geant4 nuclear physics simulation toolbox to study the spectrum of photons emitted given 18F-FDG and breast tissue properties. The resulting simulation spectra show that the CLI signal contains information that may be used to estimate whether the cancerous cells are at a depth of less than 1 mm or greater than 1 mm given appropriate imaging system design and sensitivity. The simulation spectra also show that when the source is located within 1 mm of the surface, the tissue parameters are not relevant to the model as the spectra do not vary significantly. At larger depths, however, the spectral information varies significantly with breast optical parameters, having implications for further studies and system design. While promising, further studies are needed to quantify the CLI response to more accurately incorporate tissue specific parameters and patient specific anatomical details
Quantum Chessboards in the Deuterium Molecular Ion
We present a new algorithm for vibrational control in deuterium molecules
that is feasible with current experimental technology. A pump mechanism is used
to create a coherent superposition of the D2+ vibrations. A short, intense
infrared control pulse is applied after a chosen delay time to create selective
interferences. A `chessboard' pattern of states can be realized in which a set
of even- or odd-numbered vibrational states can be selectively annihilated or
enhanced. A technique is proposed for experimental realization and observation
of this effect using 5 fs pulses of 790 nm radiation, with intermediate
intensity (5e13 W/cm2)Comment: 12 pages, 5 figure
On the organic carbon maximum on the continental slope of the eastern Arabian Sea
The sedimentary organic carbon maximum on the continental slope off western India is widely believed to be due to the preferential preservation of deposited organic matter at water depths where the intense oxygen minimum intersects the sea floor. This region is considered to constitute one of the modern analogues for the environment of formation of organic-rich sedimentary facies that are common in the geological record. We critically examine the hypothesis that the oxygen minimum in the eastern Arabian Sea is the site of enhanced organic matter accumulation and preservation using analyses of suites of samples with wide geographical coverage along this margin. Organic carbon and nitrogen reach maximum concentrations between 200 and 1600 m depth, whereas the lowest dissolved oxygen contents in the oxygen minimum lie between 200 and 800 m depth. The Corganic/N ratios and the δ13Corganic values show that the organic matter is overwhelmingly marine, and Rock-Eval pyrolysis data demonstrate that the hydrogen indices of the sediments are similar in the sediments accumulating within and outside the oxygen minimum. Thus, the organic carbon maximum extends over a larger depth range than the oxygen minimum (as is also evident on some other slopes), and there is no evidence for preferential preservation of the organic matter within the oxygen minimum. The distribution of organic matter on the western Indian continental margin is controlled by (1) variations in supply (decreasing westward away from the centers of coastal upwelling and also decreasing with increasing water depth), (2) dilution by other sedimentary components, and (3) the texture of the sediments (coarser-grained sediments having lower carbon contents), which is controlled in turn by sediment supply and reworking. The evidence available suggests that the organic carbon maximum on this slope is not related to the position of the oxygen minimum and, consequently, that oxygen minima cannot be used to explain the distribution of organic carbon at intermediate palaeodepths in the geological record
Recommended from our members
ESICM LIVES 2017 : 30th ESICM Annual Congress. September 23-27, 2017.
INTRODUCTION. Unplanned readmission to intensive care is highly
undesirable in that it contributes to increased variance in care,
disruption, difficulty in resource allocation and may increase length
of stay and mortality particularly if subject to delays. Unlike the ICU
admission from the ward, readmission prediction has received
relatively little attention, perhaps in part because at the point of ICU
discharge, full physiological information is systematically available to
the clinician and so it is expected that readmission should be largely
due to unpredictable factors. However it may be that there are
multidimensional trends that are difficult for the clinician to perceive
that may nevertheless be predictive of readmission.
OBJECTIVES. We investigated whether machine learning (ML)
techniques could be used to improve on the simple published SWIFT
score [1] for the prediction of unplanned readmission to ICU within
48 hours.
METHODS. We extracted systolic BP, pulse pressure, heart and
respiration rate, temperature, SpO2, bilirubin, creatinine, INR, lactate,
white cell count, platelet count, pH, FiO2, and total Glasgow Coma
Score from ICU stays of over 2000 adult patients from our hospital
electronic patient record system. We trained our own custom
multidimensional / time-sensitive algorithmic ML system to predict
failed discharges defined as either readmission or unexpected death
within 48 hours of discharge. We used 10-fold cross validation to assess performance. We also assessed the effect of augmenting our
system by transfer learning (TL) with 44,000 additional cases from
the MIMIC III database.
RESULTS. The SWIFT score performed relatively poorly with an
AUROC of around 0.6 which our ML system trained on local data was
also able to match. However when augmented with an additional
dataset by TL, the AUROC for the ML system improved statistically
and clinically significantly to over 0.7.
CONCLUSIONS. Machine learning is able to improve on predictors
based on simple multiple logistic regression. Thus there is likely to
be information in the trends and in combinations of variables. A
disadvantage with this technique is that ML approaches require large
amounts of data for training. However, ML approaches can be
improved by TL. Basing prediction models on locally derived data
augmented by TL is a potentially novel approach to generating tools
that customised to the institution yet can exploit the potential power
of ML algorithms.
REFERENCES
[1] Gajic O, Malinchoc M, Comfere TB, et al. The Stability and
Workload Index for Transfer score predicts unplanned intensive care
unit patient readmission: initial development and validation. Crit Care
Med. 2008;36(3):676–82.
Grant Acknowledgement
This work was internally funded
At-Risk Populations for Osteosarcoma: The Syndromes and Beyond
Osteosarcoma is the most common primary malignancy of bone. Most cases are sporadic without a known genetic or environmental cause. Heritable genetic predisposition syndromes are associated with a small percentage of osteosarcomas. Study of these rare disorders has provided insight into the molecular pathogenesis of osteosarcoma. Screening of at-risk families and surveillance of affected individuals for these syndromes may permit earlier diagnosis and more effective treatment of osteosarcoma in these populations. This paper reviews the genetic and clinical features of the known osteosarcoma predisposition syndromes
Geodynamic evolution of the lithosphere and upper mantle beneath the Alboran region of the western Mediterranean: Constraints from travel time tomography
An edited version of this paper was published by the American Geophysical Union. Copyright 2000, AGU.
See also:
http://www.agu.org/pubs/crossref/2000/2000JB900024.shtml;
http://atlas.geo.cornell.edu/morocco/publications/calvert2000.htmA number of different geodynamic models have been proposed to explain the extension that occurred during the Miocene in the Alboran Sea region of the western Mediterranean despite the continued convergence and shortening of northern Africa and southern Iberia. In an effort to provide additional geophysical constraints on these models, we performed a local, regional, and teleseismic tomographic travel time inversion for the lithospheric and upper mantle velocity structure and earthquake locations beneath the Alboran region in an area of 800 x 800 km^2. We picked P and S arrival times from digital and analog seismograms recorded by 96 seismic stations in Morocco and Spain between 1989 and 1996 and combined them with arrivals carefully selected from local and global catalogs (1964-1998) to generate a starting data set containing over 100,000 arrival times. Our results indicate that a N-S line of intermediate depth earthquakes extending from crustal depths significantly inland from the southern Iberian coat to depths of over 100 km beneath the center of the Alboran Sea coincided with a W to E transition from high to low velocities imaged in the uppermost mantle. A high-velocity body, striking approximately NE-SW, is imaged to dip southeastwards from lithospheric depths beneath the low-velocity region to depths of ~350 km. Between 350 and 500 km the imaged velocity anomalies become more diffuse. However, pronounced high-velocity anomalies are again imaged at 600 km near an isolated cluster of deep earthquakes. In addition to standard tomographic methods of error assessment, the effects of systematic and random errors were assessed using block shifting and bootstrap resampling techniques, respectively. We interpret the upper mantle high-velocity anomalies as regions of colder mantle that originate from lithospheric depths. These observations, when combined with results from other studies, suggest that delamination of a continental lithosphere played an important role in the Neogene and Quaternary evolution of the region
Propagation of regional seismic phases (Lg and Sn) and Pn velocity structure along the Africa-Iberia plate boundary zone
An edited version of this paper was published by Blackwell Publishing. Copyright 2000, Blackwell Publishing.
See also:
http://www.blackwell-synergy.com/doi/abs/10.1046/j.1365-246x.2000.00160.x;
http://atlas.geo.cornell.edu/morocco/publications/calvert2000GJI.htmWe used over 1000 regional waveforms recorded by 60 seismic stations located in northwest Africa and Iberia to map the efficiency of L g and Sn wave propagation beneath the Gulf of Cadiz, Alboran Sea and bounding Betic, Rif and Atlas mountain belts. Crustal attenuation is inferred from the tomographic inversion of L g/Pg amplitude ratios. Upper mantle attenuation is inferred from maps of Sn propagation efficiency derived by inversion of well-defined qualitative efficiency assignments based on waveform characteristics. Regions of L g attenuation correlate well with areas of thinned continental or oceanic crust, significant sedimentary basins, and lateral crustal variations. Comparison of the Sn efficiency results with velocities obtained from an anisotropic Pn traveltime inversion shows a fairly good correlation between regions of poor Sn efficiency and low Pn velocity. A low Pn velocity (7.6?7.8 km s-1) and significant Sn attenuation in the uppermost mantle is imaged beneath the Betics in southern Spain, in sharp contrast to the relatively normal Pn velocity (8.0?8.1 km s-1) and efficient Sn imaged beneath the Alboran Sea. Slow Pn velocity anomalies are also imaged beneath the Rif and Middle Atlas in Morocco. We do not identify any conclusive evidence of lithospheric-scale upper mantle attenuation beneath the Rif, although the crust in the Gibraltar region appears highly attenuating, making observations at stations in this region ambiguous. Paths crossing the Gulf of Cadiz, eastern Atlantic and the Moroccan and Iberian mesetas show very efficient Sn propagation and are imaged with high Pn velocities (8.1?8.2 km s-1). The spatial distribution of attenuation and velocity anomalies lead us to conclude that some recovery of the mantle lid beneath the Alboran Sea must have occurred since the early Miocene episode of extension and volcanism. We interpret the low velocity and attenuating regions beneath the Betics and possibly the Rif as indicating the presence of partial melt in the uppermost mantle which may be underlain by faster less attenuating mantle. In the light of observations from other geophysical and geological studies, the presence of melt at the base of the Betic crust may be an indication that delamination of continental lithosphere has played a role in the Neogene evolution of the Alboran Sea region
- …