17,398 research outputs found

    The inverse problem for pulsating neutron stars: A ``fingerprint analysis'' for the supranuclear equation of state

    Full text link
    We study the problem of detecting, and infering astrophysical information from, gravitational waves from a pulsating neutron star. We show that the fluid f and p-modes, as well as the gravitational-wave w-modes may be detectable from sources in our own galaxy, and investigate how accurately the frequencies and damping rates of these modes can be infered from a noisy gravitational-wave data stream. Based on the conclusions of this discussion we propose a strategy for revealing the supranuclear equation of state using the neutron star fingerprints: the observed frequencies of an f and a p-mode. We also discuss how well the source can be located in the sky using observations with several detectors.Comment: 9 pages, 3 figure

    General K=-1 Friedman-Lema\^itre models and the averaging problem in cosmology

    Full text link
    We introduce the notion of general K=-1 Friedman-Lema\^itre (compact) cosmologies and the notion of averaged evolution by means of an averaging map. We then analyze the Friedman-Lema\^itre equations and the role of gravitational energy on the universe evolution. We distinguish two asymptotic behaviors: radiative and mass gap. We discuss the averaging problem in cosmology for them through precise definitions. We then describe in quantitative detail the radiative case, stressing on precise estimations on the evolution of the gravitational energy and its effect in the universe's deceleration. Also in the radiative case we present a smoothing property which tells that the long time H^{3} x H^{2} stability of the flat K=-1 FL models implies H^{i+1} x H^{i} stability independently of how big the initial state was in H^{i+1} x H^{i}, i.e. there is long time smoothing of the space-time. Finally we discuss the existence of initial "big-bang" states of large gravitational energy, showing that there is no mathematical restriction to assume it to be low at the beginning of time.Comment: Revised version. 32 pages, 1 figur

    Dynamics of correlations due to a phase noisy laser

    Get PDF
    We analyze the dynamics of various kinds of correlations present between two initially entangled independent qubits, each one subject to a local phase noisy laser. We give explicit expressions of the relevant quantifiers of correlations for the general case of single-qubit unital evolution, which includes the case of a phase noisy laser. Although the light field is treated as classical, we find that this model can describe revivals of quantum correlations. Two different dynamical regimes of decay of correlations occur, a Markovian one (exponential decay) and a non-Markovian one (oscillatory decay with revivals) depending on the values of system parameters. In particular, in the non-Markovian regime, quantum correlations quantified by quantum discord show an oscillatory decay faster than that of classical correlations. Moreover, there are time regions where nonzero discord is present while entanglement is zero.Comment: 7 pages, 3 figures, accepted for publication in Phys. Scripta, special issue for CEWQO 2011 proceeding

    The time to extinction for an SIS-household-epidemic model

    Full text link
    We analyse a stochastic SIS epidemic amongst a finite population partitioned into households. Since the population is finite, the epidemic will eventually go extinct, i.e., have no more infectives in the population. We study the effects of population size and within household transmission upon the time to extinction. This is done through two approximations. The first approximation is suitable for all levels of within household transmission and is based upon an Ornstein-Uhlenbeck process approximation for the diseases fluctuations about an endemic level relying on a large population. The second approximation is suitable for high levels of within household transmission and approximates the number of infectious households by a simple homogeneously mixing SIS model with the households replaced by individuals. The analysis, supported by a simulation study, shows that the mean time to extinction is minimized by moderate levels of within household transmission

    A bilateral shear layer between two parallel Couette flows

    Full text link
    We consider a shear layer of a kind not previously studied to our knowledge. Contrary to the classical free shear layer, the width of the shear zone does not vary in the streamwise direction but rather exhibits a lateral variation. Based on some simplifying assumptions, an analytic solution has been derived for the new shear layer. These assumptions have been justified by a comparison with numerical solutions of the full Navier-Stokes equations, which accord with the analytical solution to better than 1% in the entire domain. An explicit formula is found for the width of the shear zone as a function of wall-normal coordinate. This width is independent of wall velocities in the laminar regime. Preliminary results for a co-current laminar-turbulent shear layer in the same geometry are also presented. Shear-layer instabilities were then developed and resulted in an unsteady mixing zone at the interface between the two co-current streams.Comment: 6 pages, 7 figures. Accepted for publication in Phys. Rev.

    Anti-Hyperon Enhancement through Baryon Junction Loops

    Get PDF
    The baryon junction exchange mechanism recently proposed to explain valence baryon number transport in nuclear collisions is extended to study midrapidity anti-hyperon production. Baryon junction-anti-junction (J anti-J) loops are shown to enhance anti-Lambda, anti-Xi, anti-Omega yields as well as lead to long range rapidity correlations. Results are compared to recent WA97 Pb + Pb -> Y + anti-Y + X data.Comment: 10 pages, 4 figure

    Multi Mode Interferometer for Guided Matter Waves

    Get PDF
    We describe the fundamental features of an interferometer for guided matter waves based on Y-beam splitters and show that, in a quasi two-dimensional regime, such a device exhibits high contrast fringes even in a multi mode regime and fed from a thermal source.Comment: Final version (accepted to PRL

    Transport Coefficients of Non-Newtonian Fluid and Causal Dissipative Hydrodynamics

    Full text link
    A new formula to calculate the transport coefficients of the causal dissipative hydrodynamics is derived by using the projection operator method (Mori-Zwanzig formalism) in [T. Koide, Phys. Rev. E75, 060103(R) (2007)]. This is an extension of the Green-Kubo-Nakano (GKN) formula to the case of non-Newtonian fluids, which is the essential factor to preserve the relativistic causality in relativistic dissipative hydrodynamics. This formula is the generalization of the GKN formula in the sense that it can reproduce the GKN formula in a certain limit. In this work, we extend the previous work so as to apply to more general situations.Comment: 15 pages, no figure. Discussions are added in the concluding remarks. Accepted for publication in Phys. Rev.

    Models for the magnetic ac susceptibility of granular superferromagnetic CoFe/Al2_2O3_3

    Full text link
    The magnetization and magnetic ac susceptibility, χ=χ′−iχ′′\chi = \chi' - i \chi'', of superferromagnetic systems are studied by numerical simulations. The Cole-Cole plot, χ′′\chi'' vs. χ′\chi', is used as a tool for classifying magnetic systems by their dynamical behavior. The simulations of the magnetization hysteresis and the ac susceptibility are performed with two approaches for a driven domain wall in random media. The studies are motivated by recent experimental results on the interacting nanoparticle system Co80_{80}Fe20_{20}/Al2_{2}O3_{3} showing superferromagnetic behavior. Its Cole-Cole plot indicates domain wall motion dynamics similarly to a disordered ferromagnet, including pinning and sliding motion. With our models we can successfully reproduce the features found in the experimental Cole-Cole plots.Comment: 8 pages, 6 figure
    • …
    corecore