1,240 research outputs found

    Absolutely Continuous Spectrum for Parabolic Flows/Maps

    Get PDF
    We provide an abstract framework for the study of certain spectral properties of parabolic systems; specifically, we determine under which general conditions to expect the presence of absolutely continuous spectral measures. We use these general conditions to derive results for spectral properties of time-changes of unipotent flows on homogeneous spaces of semisimple groups regarding absolutely continuous spectrum as well as maximal spectral type; the time-changes of the horocycle flow are special cases of this general category of flows. In addition we use the general conditions to derive spectral results for twisted horocycle flows and to rederive certain spectral results for skew products over translations and Furstenberg transformations

    Parabolic Flows Renormalized by Partially Hyperbolic Maps

    Full text link
    We consider parabolic flows on 3-dimensional manifolds which are renormalized by circle extensions of Anosov diffeormorphisms. This class of flows includes nilflows on the Heisenberg nilmanifold which are renormalized by partially hyperbolic automorphisms. The transfer operators associated to the renormalization maps, acting on anisotropic Sobolev spaces, are known to have good spectral properties (this relies on ideas which have some resemblance to representation theory but also apply to non-algebraic systems). The spectral information is used to describe the deviation of ergodic averages and solutions of the cohomological equation for the parabolic flow.Comment: Comments welcom

    Local structure of REFeAsO (RE=La, Pr, Nd, Sm) oxypnictides studied by Fe K-edge EXAFS

    Full text link
    Local structure of REOFeAs (RE=La, Pr, Nd, Sm) system has been studied as a function of chemical pressure varied due to different rare-earth size. Fe K-edge extended X-ray absorption fine structure (EXAFS) measurements in the fluorescence mode has permitted to compare systematically the inter-atomic distances and their mean square relative displacements (MSRD). We find that the Fe-As bond length and the corresponding MSRD hardly show any change, suggesting the strongly covalent nature of this bond, while the Fe-Fe and Fe-RE bond lengths decrease with decreasing rare earth size. The results provide important information on the atomic correlations that could have direct implication on the superconductivity and magnetism of REOFeAs system, with the chemical pressure being a key ingredient

    Isotope effect on the E2g phonon and mesoscopic phase separation near the electronic topological transition in Mg1-xAlxB2

    Full text link
    We report the boron isotope effect on the E2g phonon mode by micro-Raman spectroscopy on the ternary Mg1-xAlxB2 system, synthesized with pure isotopes 10B and 11B. The isotope coefficient on the phonon frequency is near 0.5 in the full range decreasing near x = 0. The intraband electron-phonon (e-ph) coupling, for the electrons in the sigma band, has been extracted from the E2g line-width and frequency softening. Tuning the Fermi energy near the electronic topological transition (ETT), where the sigma Fermi surface changes from 2D to 3D topology the E2g mode, shows the known Kohn anomaly on the 2D side of the ETT and a splitting of the E2g phonon frequency into a hard and soft component from x = 0 to x = 0.28. The results suggest a minor role of the intraband phonon mediated pairing in the control of the high critical temperature in Mg1-xAlxB2. The common physical features of diborides with the novel multigap FeAs-based superconductors and cuprates is discussed.Comment: 19 pages, 6 figure

    De-excitation spectroscopy of strongly interacting Rydberg gases

    Full text link
    We present experimental results on the controlled de-excitation of Rydberg states in a cold gas of Rb atoms. The effect of the van der Waals interactions between the Rydberg atoms is clearly seen in the de-excitation spectrum and dynamics. Our observations are confirmed by numerical simulations. In particular, for off-resonant (facilitated) excitation we find that the de-excitation spectrum reflects the spatial arrangement of the atoms in the quasi one-dimensional geometry of our experiment. We discuss future applications of this technique and implications for detection and controlled dissipation schemes.Comment: 6 pages, 5 figure

    Electronic Structure of CeFeAsO1-xFx (x=0, 0.11/x=0.12) compounds

    Full text link
    We report an extensive study on the intrinsic bulk electronic structure of the high-temperature superconductor CeFeAsO0.89F0.11 and its parent compound CeFeAsO by soft and hard x-ray photoemission, x-ray absorption and soft-x-ray emission spectroscopies. The complementary surface/bulk probing depth, and the elemental and chemical sensitivity of these techniques allows resolving the intrinsic electronic structure of each element and correlating it with the local structure, which has been probed by extended-x-ray absorption fine structure spectroscopy. The measurements indicate a predominant 4f1 (i.e. Ce3+) initial state configuration for Cerium and an effective valence-band-to-4f charge-transfer screening of the core hole. The spectra also reveal the presence of a small Ce f0 initial state configuration, which we assign to the occurrence of an intermediate valence state. The data reveal a reasonably good agreement with the partial density of states as obtained in standard density functional calculations over a large energy range. Implications for the electronic structure of these materials are discussed.Comment: Accepted for publication in Phys. Rev.

    Orbital occupancies and the putative jeff = 1/2 groundstate in Ba2IrO4: a combined oxygen K edge XAS and RIXS study

    Get PDF
    The nature of the electronic groundstate of Ba2IrO4 has been addressed using soft X-ray absorption and inelastic scattering techniques in the vicinity of the oxygen K edge. From the polarization and angular dependence of XAS we deduce an approximately equal superposition of xy, yz and zx Ir4+ 5d orbitals. By combining the measured orbital occupancies, with the value of the spin-orbit coupling provided by RIXS, we estimate the crystal field splitting associated with the tetragonal distortion of the IrO6 octahedra to be small, \Delta=50(50) meV. We thus conclude definitively that Ba2IrO4 is a close realization of a spin-orbit Mott insulator with a jeff = 1/2 groundstate, thereby overcoming ambiguities in this assignment associated with the interpretation of X-ray resonant scattering experiments.Comment: 5 pages, 5 figure
    corecore