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Chapter 1: Introduction

1.1 Motivation

Spectral theory of dynamical systems has long been studied [16]; of particular inter-

est, is the notion of when to expect the presence of absolutely continuous spectral

measures. Since absolutely continuous spectrum implies mixing, this property can

be thought of as an indicator of how chaotic, or how far from orderly, a system is. In

the hyperbolic setting, systems are characterized as having a correlation decay that

is exponential. As a result, techniques derived from the existence of a spectral gap

as well as probabilistic tools are available for the study of spectral properties, and

therefore, it is in the hyperbolic setting where the existence of absolutely continuous

spectrum predominantly occurs. Interestingly, certain parabolic systems also share

this property despite having at most polynomial decay of correlations. This slower

decay of correlations precludes the use of the tools available in the spectral study

of hyperbolic systems, and consequently, spectral theory of smooth parabolic flows

and smooth perturbations of well known parabolic flows has been much less stud-

ied. This work is devoted to creating an abstract framework for the study of certain

spectral properties of parabolic systems. Specifically, we attempt to answer the
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question: under what general conditions can we expect the existence of absolutely

continuous spectral measures?

First we will provide a bit of background on operators and spectral theory. Then

we will describe two methods that have been used in the spectral study of parabolic

systems and discuss their applications to both a simple example and a more com-

plex example. We use this as motivation to develop general conditions under which

we expect a system to have absolutely continuous measures. We use these general

conditions to derive results for spectral properties of time-changes of unipotent flows

on homogeneous spaces of semisimple groups regarding absolute continuity of the

spectrum as well as maximal spectral type; the time-changes of the horocycle flow

are special cases of this general category of flows. In addition we use the general con-

ditions to derive spectral results for twisted horocycle flows and to rederive spectral

results for skew products over translations and Furstenberg transformations [29].

1.2 Background [12], [21], [22], [30]

Let H be a Hilbert Space and let A, V be bounded, densely defined operators acting

on H.

If for f, g P H,

xAf, gyH “ xf, AgyH

then A is symmetric, and if

xAf, gyH “ ´ xf, AgyH
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then A is skew-symmetric.

The adjoint, A˚, of an operator A, is defined on all g P H such that

xAf, gyH

is a continuous linear functional of f . Since DompAq “ H, there is a unique A˚g

such that

xAf, gyH “ xf, A
˚gyH

for all f P DompAq.

A is self-adjoint if

A “ A˚

and A is skew-adjoint if

A “ ´A˚.

A is essentially self-adjoint if

A “ A˚

and A is essentially skew-adjoint if

A “ ´A˚.

An operator V is unitary if V ˚ “ V ´1.

The operator norm is defined as

‖ A ‖op“ supt ‖ Af ‖H : ‖ f ‖Hď 1u.
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The spectrum σpAq of a self-adjoint operator A, is given by the the collection of

z P C for which

A´ zI

does not have a bounded inverse.

A spectral projector E is set function that maps Borel subsets of R into projec-

tions on H.

For S Ă R, the spectral measure is given by

µf pSq “

ż

R
χSpxqdµf pxq “

ż

R
χSpxqdxEpSqf, fy.

Consider a flow, φt (map φn), generated by a skew-adjoint operator A:

f ˝ φAt “ etAf pf ˝ φAn “ enAfq.

The Spectral Theorem gives an expression for µ̂f .

For t P R:

xf ˝ φAt , fyH “

ż

R
eitξdxEpξqf, fy

“

ż

R
eitξdµf pξq “ µ̂f ptq

For n P Z:

xf ˝ φAn , fyH “

ż π

´π

einξdxEpξqf, fy

“

ż π

´π

einξdµf pξq “ µ̂f pnq.

The Hilbert Space H has the following orthogonal decomposition:

H “ Hac

à

Hpp

à

Hsc
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where

Hac is the subspace of vectors f P H for which µf is absolutely continuous with

respect to the Lebesgue measure m, i.e., for any S P R such that mpSq “ 0,

µf pSq “ 0.

Hpp is the subspace of vectors f P H for which µf is discrete with respect to

Lebesgue, i.e., µf is supported on at most a countable set.

Hsc is the subspace of vectors f P H for which µf is singularly continuous with

respect to Lebesgue, i.e., it is continuous but supported on a set of Lebesgue

measure 0.

The maximal spectral type µA of the operator A is a positive measure (defined up

to equivalence) such that for every f P H, µf is absolutely continuous with respect

to µA and no measure absolutely continuous with respect to µA but not equivalent

to µA has the same property. If µA “ m, the Lebesgue measure, then the maximal

spectral type is said to be Lebesgue.

The main question we investigate is:

Under which conditions do we expect the existence of a subspace of H on

which the associated spectral measures are absolutely continuous with respect

to the Lebesgue measure?

Additionally, in our results for time-changes of unipotent flows, we determine that

the maximal spectral type is Lebesgue following the method in [8]. In the applica-

tions to maps, the maximal spectral type is implied by the purity law in [14].
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1.3 Methods Used in the Parabolic Setting

The following two methods can be applied to certain parabolic systems to show the

existence of absolutely continuous measures. We provide brief descriptions of the

methods followed by examples of their applications.

1.3.1 Method 1. Limiting Estimates for the Resolvent

On the level of the generator, spectral properties can be derived from limiting prop-

erties involving the resolvent,

Rpzq “ pA´ zIq´1

for A self-adjoint, z “ λ` iµ, λ P σpAq. Since, ‖ Rpzq ‖“ |µ|´1, Rpzq does not have

a bounded limit as µÑ `0. If, however, there exists a dense subset of vectors in H

for which the limF pλ` iµq “ xf,Rpλ` iµqfy exists as µÑ `0, then we can obtain

results on the spectral properties of H.

Theorem 1. [2] If S Ă R is an open set and |xf, ImRpzqfy| ď Cpfq ă 8 for all

λ P S and µ ą 0, then f is A-absolutely continuous on S.

1.3.2 Method 2. Regularity of the Spectral Measure

Another method useful in answering the first question is by directly showing that

µ̂f ptq P L2pRq (or µ̂f pnq P `2pZq in the discrete case) as this implies that µf is

absolutely continuous with respect to the Lebesgue measure in the following way

(we include the proof for the continuous case):
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Suppose µ̂f P L
2pRq. Let a set S P R be such that mpSq “ 0 for m the Lebesgue

measure. Let χS be the indicator function of S. Since χS can be approximated by

smooth functions with compact support, the following is well-defined:

µf pSq “

ż

R
χSptq dµf ptq.

χS can be expressed as the inverse Fourier Transform of χ̂S,

µf pSq “

ż

R
χSptq dµf ptq “

ż

R
p

ż

R
χ̂Spsq ¨ e

istdsq dµf ptq

“

ż

R
χ̂Sptqp

ż

R
eist dµf psqq dt “

ż

R
χ̂Sptq ¨ µ̂f ptq dt

and from Hölder’s Inequality,

|µf pSq| ď‖ χ̂Sptq ‖L2pRq ¨ ‖ µ̂f ptq ‖L2pRqď
a

mpSq ¨ ‖ µ̂f ptq ‖L2pRq“ 0.

To show that the assumption µ̂f P L2 holds, one can show that the growth of

|xf ˝ φAt , fyH| = Op 1
tβ
q for β ą 1

2
. Polynomial decay of correlations of general

smooth functions does not guarantee a fast enough rate to achieve this bound, even

in the simplest examples.

Note that both methods rely on a particular choice of subspace of H. If the methods

are applicable on a dense subspace of H then the spectrum of A is purely absolutely

continuous since Hac is closed.
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1.4 A Simple Case - The Horocycle Flow

For a simple example, we begin with the classical horocycle flow. The horocycle

flow on compact, hyperbolic surfaces, is minimal [13], uniquely ergodic [10], strongly

mixing [24], and has zero entropy [11].

On M “ ΓzPSLp2,Rq, where M is either compact or of finite area, we consider the

basis

$

’

’

&

’

’

%
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¨

˚

˚

˝

0 1

0 0

˛

‹

‹
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0 0
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0
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-

of the Lie algebra sl2pRq, where U and V are the generators of the positive and

negative horocycle flows, thUt u and thVt u respectively, and X is the generator of the

geodesic flow, tφXs u. It follows from [1] that Uand V are essentially skew-adjoint.

Our Hilbert Space is L2pM, volq for vol the hUt -invariant volume form.

The key to the simplicity of this example lies in the commutation relations:

rX,U s “ U

and

e´tU rX, etU s “ p
şt

0
1 ˝ hUτ pxq dτq U “ tU (See 6.2 for the calculation.)
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1.4.1 Method 1. Applied to the Horocycle Flow

For cases involving such a simple commutator, it is possible to prove that limµÑ`0 F pλ`

iµq exists by showing that

ż 1

0

|
d

dµ
F pλ` iµq|dµ ă 8.

This is achieved by expressing a bound for d
dµ
F pλ ` iµq in terms of F pλ ` iµq. In

many situations this requires considering a new function F pλ ` iµ ` iεq and then

applying the Gronwall Inequality. However, in the case of the horocycle flow, the

simplicity of the commutator enables us to calculate the estimate directly. In the

following calculations we will use the operator iU as it is essentially self-adjoint. We

include more details in 6.1; what follows are the main steps. This proof is motivated

by an overview of conjugate operator methods in [2] (Chapter 7).

Let λ P σpiUq and z “ λ` iµ for µ ą 0. The resolvent of iU is given by,

Rpzq “ piU ´ zq´1.

We will use the following important identities,

d

dz
Rpzq “ Rpzq2,

rRpzq, Xs “ RpzqrX, iU sRpzq,

and since rX, iU s “ iU,

z
d

dz
Rpzq “ rRpzq, Xs ´Rpzq. (1.1)
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For f P DompXq,

z
d

dz
F pzq “ ´F pzq ´ xRpzqf,Xfy ` xXf,Rpzqfy.

Let ‖ ¨ ‖“‖ ¨ ‖L2pM,volq. Given our choice of z, the following equality holds,

‖ Rpzqf ‖“‖ Rpzqf ‖“ µ´
1
2 ¨ |ImF pzq|

1
2 .

Using the above bound, we have the following inequality,

|
d

dµ
F pλ` iµq| ď |λ|´1p‖ f ‖ `2 ‖ Xf ‖qµ´

1
2 |F pλ` iµq|

1
2 . (1.2)

We divide both sides by |F pλ ` iµq|
1
2 , and since |F pλ ` iµq|

1
2 “ |F pλ ` iµq

1
2 |, we

obtain, after integrating with respect to µ for 0 ă µ ă 1,

|F pλ` iµq|
1
2 ď |F pλ` iq|

1
2 ` 2|λ|´1p‖ f ‖ `2 ‖ Xf ‖q.

We use this to bound the right hand side of (1.2). Since λ is bounded away from 0,

there exists a constant M such that,

|
d

dµ
F pλ` iµq| ď

M
?
µ
p‖ f ‖2 `2 ‖ Xf ‖2q.

The above inequality enables us to show the following is finite,

ż 1

0

|
d

dµ
F pλ` iµq| dµ ď

ż 1

0

M
?
µ
p‖ f ‖2 `2 ‖ Xf ‖2q dµ

“ 2Mp‖ f ‖2 `2 ‖ Xf ‖2q ă 8,

which implies the existence of limµÑ0` F pλ` iµq.
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1.4.2 Method 2. Applied to the Horocycle Flow

For this method we show that

xf ˝ hUt , fyL2pM,volq P L
2
pR, dtq.

Because the geodesic flow is volume preserving,

xf ˝ hUt , fyL2pM,volq “ xf ˝ h
U
t ˝ φ

X
s , f ˝ φ

X
s yL2pM,volq.

We integrate both sides from 0 to σ with respect to s,

xf ˝ hUt , fyL2pM,volq “
1

σ

ż σ

0

xf ˝ hUt ˝ φ
X
s , f ˝ φ

X
s yL2pM,volqds.

and then integrate by parts,

f ˝ φXs Xf ˝ φXs

ż σ

0

f ˝ hUt ˝ φ
X
s ds f ˝ hUt ˝ φ

X
s

1

σ

ż σ

0

xf ˝ hUt ˝ φ
X
s , f ˝ φ

X
s yL2pM,volqds

“
1

σ
x

ż σ

0

f ˝hUt ˝φ
X
s ds, f ˝φ

X
s yL2pM,volq´

1

σ

ż σ

0

x

ż S

0

f ˝hUt ˝φ
X
s ds,Xf ˝φ

X
s yL2pM,volqdS.

The only term that is not clearly bounded is

ż σ

0

f ˝ hUt ˝ φ
X
s ds.

We consider functions of the form

f “ Ug

11



for g P L2pM, volq. Also, we use that

d

ds
pg ˝ hUt ˝ φ

X
s q “ tUg ˝ hUt ˝ φ

X
s `Xg ˝ h

U
t ˝ φ

X
s ,

and thus,

tUg ˝ hUt ˝ φ
X
s “

d

ds
pg ˝ hUt ˝ φ

X
s q ´Xg ˝ h

U
t ˝ φ

X
s .

So,
ż σ

0

f ˝ hUt ˝ φ
X
s ds “

ż σ

0

Ug ˝ hUt ˝ φ
X
s ds “

1

t

ż σ

0

tUg ˝ hUt ˝ φ
X
s ds

“
1

t

ż σ

0

d

ds
pg ˝ hUt ˝ φ

X
s qds´

1

t

ż σ

0

Xg ˝ hUt ˝ φ
X
s ds,

and hence,

‖
ż σ

0

f ˝ hUt ˝ φ
X
s ds ‖L2pM,volqq ď

1

t
¨ p‖ g ‖L2pM,volq ` ‖ Xg ‖L2pM,volqq.

This shows that

| ă f ˝ hUt pxq, f ąL2pM,volq | “ Op
1

t
q.

It is an important observation that

ż σ

0

f ˝ hUt ˝ φ
X
s ds

is approximately (for small σ and large t) an ergodic average for the horocycle flow,

i.e.,

lim
tÑ8

ż σ

0

f ˝ hUt ˝ φ
X
s ds “

ż

M

f dµ.
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This geometric property was initially used by Marcus in his proof of mixing of the

horocycle flow [18]; above we have a quantitative version along coboundaries. This

technique was a key tool in [8] to prove spectral results for the time-changes of

the horocycle flow. The following figure, Figure 1., from [17] illustrates that the

image of a small geodesic segment γ1, under the horocycle flow hUt pγ1q for large t,

is approximately a horocycle segment, γ2.
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1.4.3 Relationship with the Geodesic Flow

In fact, the commutator relations are so nice that the spectral properties can be

derived from a direct analysis of these relations. The commutation relation between

the geodesic and horocycle flows can be written as

φXs ˝ h
U
t ˝ φ

X
´s “ hUtes .

It also has the following geometric interpretation.

If you travel along a geodesic for a given time s, and then you travel along a horo-

cycle for time t before traveling back along a geodesic for time ´s, it is the same as

having traveled along a horocycle arc for a rescaled time, tes. This shows that etU is

unitarily equivalent to the renormalized one-parameter group ete
sU . Consequently,

the generators U and esU are also unitarily equivalent, and thus, spectrally isomor-

phic. Since this means that the spectral measure is invariant under multiplication

by es, the spectrum must be Lebesgue [12] (p 664).
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1.5 Time-Changes of the Horocycle Flow (Compact Case)

Even a small perturbation can disturb the simplicity of these relations, and thus,

create obstacles in the study of spectral properties. We will use the example of

adding a time-change to the horocycle flow to briefly describe the methods used

in [28], [29], [8] to show that the spectrum remains absolutely continuous under

this reparametrization when M is compact. Through these methods we will try

to understand, on the level of the generators, to what extent we can increase the

complexity in the commutation relations and still maintain absolute continuity of

the spectrum.

Let τ : M ˆ RÑ R such that

τpx, t` t1q “ τpx, tq ` τphUt pxq, t
1
q.

Let α : M Ñ R`, be the infinitesimal generator of τ , such that α P C8pMq and

ż

M

αvol “

ż

M

volα “ 1

where vol is the hUt -invariant volume form and volα is the hUαt -invariant volume

form.

Now we consider a time-change on the positive horocycle flow, thUαt u, generated by

Uα “: U{α.

The commutation relations are now as follows,

rX,Uαs “ p
Xα

α
´ 1qUα “ GpαqUα

15



and

e´tUαrX, etUαs “ p

ż t

0

p
Xα

α
´ 1q ˝ hUατ pxq dτqUα “ Gpα, tqUα.

The fact that applying the aforementioned spectral methods is not so straightforward

reflects these more complicated relations.

1.5.1 Method 1. Applied to the Time-Changes of the Horocycle Flow

(Compact Case) [28], [29]

The more basic techniques for proving the existence of such limits require a simple

expression for the commutator rX, iUαs as seen in 1.4.1; for example, in this case

we cannot verify the identity in equation (1.1) and thus, cannot proceed with the

calculations as before. To extend these methods to more general and complicated

cases, Mourre [20] derived the operator (we describe his estimate in the time-change

setting)

EpSqrX, iUαsEpSq

for S a Borel set in R, f P L2
0pM, volαq (zero average functions in L2pM, volαq), and

µf the spectral measure associated to Uα as described in 1.2. For each bounded

Borel set S P R, EpSqrX, iUαsEpSq is bounded and self-adjoint.

Definition 1. If there exists a number a ą 0 such that

EpSqrX, iUαsµf pSq ě aEpSq
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then the ”Mourre estimate” is satisfied.

The importance of this estimate for us lies in the following theorem:

Theorem 2. [29] Let Uα and X be skew-adjoint operators in a Hilbert space H.

Suppose that Uα is of class C2pXq (i.e. e´tXUαe
tX is of class C2pXq) and satisfies a

Mourre Estimate on a bounded Borel set S Ă R. Then Uα has no singular spectrum

in S.

The idea is to show that rX, iUαs has a definite sign when localized in a neighborhood

of λ, for λ P σpiUαq. Showing this positivity condition in the time-change case does

not follow immediately from the natural commutator rX, iUαs. Instead the author

in [28] relies on the following,

H1 “ ´iLU , H2 “ ´iLX

H “ α
1
2Uα

1
2 , H2 “ pα

1
2Uα

1
2 q2

and

riH2, H2s “ H2g ` 2HgH ` gH2

for g “ ´1
2
Gpαq.

riH2, H2s satisfies the Mourre Estimate under the added assumption that g ą 0,

equivalent to the Kushnirenko Condition [15]. Since the spectral properties of H

can be derived from those of H2, and since H is spectrally equivalent to Uα, the

author concludes that Uα has purely absolutely continuous spectrum except on CK.
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In a subsequent paper [29], the author modifies the commutator differently and

replaces the Kushnirenko Condition by exploiting the unique ergodicity present in

the compact case.

AL “
1

L

ż L

0

eitHH2e
´itH dt

gL “
1

L

ż L

0

g ˝ hUαt pxq dt

Using unique ergodicity, the author shows that

lim
LÑ8

gL “
1

2

and thus, for large L,

gL ą 0.

He then proves the Mourre Estimate for rH2, ALs on S P p0,8q with

a :“ 2 infpSq inf
xPM

gLpxq.

Again, since the spectral properties of H can be derived from those of H2, and since

H is spectrally equivalent to Uα, the author concludes that Uα has purely absolutely

continuous spectrum except on CK.
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1.5.2 Method 2. Applied to the Time-Changes of the Horocycle Flow

(Compact Case) [8]

As mentioned previously, a direct approach to proving absolute continuity of the

spectral measure involves deriving square mean bounds on the Fourier transform

of the measure and requires that the decay of correlations of a general smooth

function under the flow be square-integrable (this is not even satisfied in the classical

horocycle case [25]). In the time-change case, this condition is not satisfied either;

to circumvent this problem, the authors in [8] derive square integrable decay of

correlations for smooth coboundaries.

Definition 2. A function f on M is called a coboundary for the flow thUαt u if there

exists a function g on M , called a transfer fuction, such that Uαg “ f .

In contrast to the horocycle case, it is much more difficult to bound

ż σ

0

f ˝ hUαt ˝ φXs ds.

If we try to continue as in 1.4.2,

ż σ

0

f ˝ hUαt ˝ φXs ds “

ż σ

0

Uαg ˝ h
Uα
t ˝ φXs ds “

1

t

ż σ

0

tUαg ˝ h
Uα
t ˝ φXs ds,

but tUα is not equivalent to the commutator e´tUαrX, etUαs.

Instead the authors introduce the commutator in the following way,

ż σ

0

pUα ´
Gpα, tq

t
Uα `

Gpα, tq

t
Uαqg ˝ h

Uα
t ˝ φXs ds

“

ż σ

0

pUα ´
Gpα, tq

t
Uαqg ˝ h

Uα
t ˝ φXs ds`

ż σ

0

Gpα, tq

t
Uαg ˝ h

Uα
t ˝ φXs ds.
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Bounds for the second integral follow from 1.4.2, however, bounding the first integral

is difficult. The required bounds are ultimately achieved by deriving bounds on

integrals along the push-forward of geodesic arcs - the technique described at the

end of 1.4.2, followed by a bootstrap of the estimates. The authors also rely on the

unique ergodicity of the flow in the compact setting as the uniform convergence of

lim
tÑ8

Gpα, tq

t
“ ´1

is very important. The reason for this becomes apparent in the following section.

In an effort to find general conditions applicable to parabolic flows, we take from

Method 1. the idea of imposing conditions on the level of the generators and thus

eliminate any reliance on geometric behavior and interactions. We express these

conditions in terms of restrictions on the growth with respect to t of the relevant

commutators in order to achieve the estimate in Method 2. To do this, we mimic

the proof from [8] using general operators in order to identify exactly which terms

must be controlled. An advantage to this method is that it provides a segue to

determining maximal spectral type.
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Chapter 2: General Results

2.1 Conditions

Let U be a skew-adjoint operator in a Hilbert space H with norm ‖ ¨ ‖H. We define

the spectral measure, µf by its Fourier Transform,

µ̂f ptq “ xe
tUf, fyH “

ż

R
eitξdµf pξq

for f P H.

In the discrete case we have

µ̂f pnq “ xe
nUf, fyH “

ż π

´π

einξdµf pξq

We find conditions under which µf is absolutely continuous with respect to the

Lebesgue measure.

Preliminary Assumptions

Suppose that for some operator X on H, on a subspace D Ă DompXq dense in H,

etUpDq Ă D, and the commutator

Hptq “ e´tU rX, etU s

is defined on D.
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For u P D, let

Hptq

tβ
u

H
ÝÑ
tÑ8

Hu.

Suppose also that tesXu is a group of bounded operators for which

sup
sPr0,σs

‖ esX ‖opă `8

and limsÑ0
esX´I
s

“ X on D.

For B1, B2 bounded operators on H such that

B2 : D Ñ D, let

‖ ă etUf, f ąH ‖L2pRq ď ‖ 1

σ

ż σ

0

ă esXetUf,B1e
sXB2f ąH ds ‖L2pRq .

Note: In the discrete case, instead of the continuous parameter t and norm ‖ ¨ ‖L2pR

we use the discrete parameter n and norm ‖ ¨ ‖`2pZq.

Theorem 3. If for β ą 1
2
, Hptq and H satisfy:

(i) Hptq
tβ
H´1 : D Ñ D, is defined on RanpHq, extends to a bounded operator with

uniformly bounded ‖ ¨ ‖op norm in t, and satisfies on RanpHq,

lim sup
tÑ8

‖ I ´ HptqH´1

tβ
‖opă 1

(ii) rX, Hptq
tβ
H´1s is defined on RanpHq and extends to a bounded operator with

uniformly bounded ‖ ¨ ‖op norm in t

(iii) rHptq, HsH´1 is defined on RanpHq and extends to a bounded operator with

uniformly bounded ‖ ¨ ‖op norm in t

then for f P RanpHq XD, µf is absolutely continuous.
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Furthermore, if

(iv) RanpHq XD “ H,

then the spectrum of H is purely absolutely continuous.

Remark: It is never true in ergodic theory that RanpHq XD “ H. However, in

many cases, RanpHq XD “ F for F a subspace of H; for example, F “ L2
0pMq

the space of zero-average functions in H “ L2pMq. While this doesn’t give a result

for purely absolutely continuous spectrum it implies the existence of an absolutely

continuous component.

Proof. Let f P RanpHq XD.

‖ µ̂f ptq ‖L2pRq“‖ ă etUf, f ąH ‖L2pRq ď ‖ 1

σ

ż σ

0

ă esXetUf,B1e
sXB2f ąH ds‖L2pRq .

For s P r0, σs, we integrate by parts:

B1e
sXB2f

d

ds
pB1e

sXB2fq “ B1e
sXLXpB2fq

esXetUf

ż σ

0

esXetUfds.

1

σ

ż σ

0

ă esXetUf,B1e
sXB2f ąH ds

“
1

σ
ă

ż σ

0

esXetUfds,B1e
σXB2f ąH

´
1

σ

ż σ

0

ă

ż S

0

esXetUfds,B1e
sXLXpB2fq ąH dS
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From our assumptions, both B1e
sXB2f and B1e

sXLXpB2fq are bounded in H.

Thus, in order to show that µ̂f ptq “ Op 1
tβ
q, we need a bound (in t) for

‖
ż σ

0

esXetUfds ‖H .

Suppose that conditions piq, piiq, and piiiq hold, and let f be a coboundary of the

form f “ Hg,

for g P DompHq XD.

ż σ

0

esXetUfds “

ż σ

0

esXetUHgds “

ż σ

0

esXetUpH ´
Hptq

tβ
qgds

looooooooooooooomooooooooooooooon

I.

`

ż σ

0

esXetU
Hptq

tβ
gds

loooooooooomoooooooooon

II.

I. Let

H̃ps, tq “ esXetUpI ´
HptqH´1

tβ
qe´tUe´sX .

(H may not be invertible in H, however it is on coboundaries of the form f “ Hg.)

It follows from the assumption lim sup
tÑ8

‖ I ´ HptqH´1

tβ
‖opă 1, that for large t,

‖ H̃ps, tq ‖Hă C1 ă 1.

Now we can rewrite

ż σ

0

esXetUpH ´
Hptq

tβ
qgds “

ż σ

0

esXetUpI ´
HptqH´1

tβ
qHgds “

ż σ

0

H̃ps, tqesXetUfds,

and integration by parts gives

ż σ

0

H̃ps, tqesXetUfds “ H̃pσ, tq

ż σ

0

esXetUfds´

ż σ

0

BH̃pS, tq

BS
r

ż S

0

esXetUfdssdS.
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So we must bound BH̃ps,tq
Bs

:

BH̃ps, tq

Bs
“
B

Bs
r

1

tβ
esXetUHptqH´1e´tUe´sXs

“
1

tβ
resXXetUHptqH´1e´tUe´sX ´ esXetUHptqH´1e´tUXe´sXs

Since esX and e´sX are bounded, we can factor esX from the left and e´sX from the

right and now consider bounding the term

1

tβ
prX, etUHptqH´1e´tU sq

“
1

tβ
prX, etU sHptqH´1e´tU ` etU rX,HptqH´1

se´tU ` etUHptqH´1
rX, e´tU s

Using the identity e´tU rX, etU s “ ´rX, e´tU setU we can simplify and combine terms:

1

tβ
etUpHptq2H´1

` rX,HptqH´1
s ´HptqH´1Hptqqe´tU

“ etUprX,
HptqH´1

tβ
s ´

HptqH´1

tβ
rHptq, HsH´1

qe´tU

Conditions piq, piiq, and piiiq imply

‖ BH̃ps, tq
Bs

‖opď Cp‖ Hptq
tβ

H´1 ‖op ‖ rHptq, HsH´1 ‖op ` ‖ rX, Hptq
tβ

H´1
sq ‖opď C2

for some constants C and C2.
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II. For g P DompHq XD,

1

tβ

ż σ

0

esXetUHptqgds “
1

tβ

ż σ

0

esXetUXgds´
1

tβ

ż σ

0

d

ds
esXetUgds

ùñ ‖ 1

tβ

ż σ

0

esXetUHptqgds ‖Hď
C3

tβ
‖ Xg ‖H `

C4

tβ
‖ g ‖H .

Finally, from I. and II.,

sup
sPr0,σs

‖
ż s

0

esXetUfds ‖H

ď sup
sPr0,σs

p‖ H̃ps, tq ‖op ¨ ‖
ż s

0

esXetUfds ‖Hq

` σ ¨ sup
sPr0,σs

p‖ BH̃ps, tq
Bs

‖op ¨ ‖
ż s

0

esXetUfds ‖Hq `
C3 ‖ Xg ‖H `C4 ‖ g ‖H

tβ
.

So for σ ą 0, chosen such that 0 ă C1 ` σC2 ă 1, for all t sufficiently large,

sup
sPr0,σs

‖
ż s

0

esXetUfds ‖Hď
C3 ‖ Xg ‖H `C4 ‖ g ‖H

tβ
1

p1´ C1 ´ σC2q
“ Op

1

tβ
q.

Thus, since µ̂f ptq P L
2pRq, µf is absolutely continuous for f P RanpHq XD. Fur-

thermore, if RanpHq X D is dense, then µf is absolutely continuous for a dense

subspace of functions in H, and thus, the spectrum of U is purely absolutely con-

tinuous.

Note: In the discrete case, the conclusion is that

‖ ă enUf, f ąH ‖`2pZq“ Op
1

nβ
q

for β ą 1
2
, and thus, µf pnq P `

2pZq.
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Chapter 3: Applications to Flows

3.1 Time-Changes of Unipotent Flows on Homogeneous Spaces of

Semisimple Groups

As a direct consequence of Theorem 1, we derive a result for a specific category of

generating operators.

Let G be a semisimple Lie group and let the manifold M “ ΓzG for some lattice Γ

in G such that M has finite area.

By the Jacobson-Morozov Theorem, any nilpotent element U of the semisimple Lie

algebra of G is contained in a subalgebra isomorphic to sl2. This means that this

subalgebra contains an element X, such that rU,Xs “ U . Let etU be a unitary

operator of the Hilbert space L2pM, volq. Thus, if the unipotent flow generated by

U , f ˝ φUt “ etUf , f P L2pM, volq, is ergodic, then from Lemma 5.1 in [19], it has

purely absolutely continuous spectrum on

L2
0pM, volq “ tf P L2

pMq |

ż

M

f vol “ 0u.
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Let τ : M ˆ RÑ R such that

τpx, t` t1q “ τpx, tq ` τpφUt pxq, t
1
q.

Let α : M Ñ R`, be the infinitesimal generator of τ , such that α P C8pMq and

ż

M

αvol “

ż

M

volα “ 1

where vol is the φUt -invariant volume form and volα is the φUαt -invariant volume

form. Now we consider a time-changed flow, tφUαt u, generated by

Uα “: U{α.

Let etUα be a unitary operator on the Hilbert space L2pM, volαq, and let D “

C8pMq.

rX,Uαs “ GpαqUα “ p
Xα

α
´ 1qUα “ H

e´tUαrX, etUαs “ Gpα, tqUα “ p

ż t

0

p
Xα

α
´ 1q ˝ φUατ pxqdτqUα “ Hptq.

The ergodicity of φUαt gives us the following pointwise limit,

lim
tÑ8

Gpα, tq

t
“ lim

tÑ8

1

t

ż t

0

p
Xα

α
´ 1q ˝ φUατ pxqdτ

“ lim
tÑ8

p
1

t

ż t

0

Xα

α
˝ φUατ pxqdτ `

1

t

ż t

0

´1 ˝ φUατ pxqdτq

“ lim
tÑ8

p
1

t

ż t

0

Xα

α
˝ φUατ pxqdτ ´ 1q

“

ż

M

Xα

α
dvolα ´ 1 “ ´1

and thus, for u P C8pMq,

lim
tÑ8

Gpα, tq

t
Uαu “ ´Uαu “ Hu.
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Lastly,
ż

M

etUαf ¨ f dvolα “

ż

M

etUαf ¨ αf dvol

“

ż

M

esXetUαf ¨ esXαf dvol “

ż

M

esXetUαf ¨
1

α
esXαf dvolα.

So if we integrate both sides of

ă etUαf, f ąL2pM,volαq“ă esXetUαf,
1

α
esXαf ąL2pM,volαq

with respect to s, we obtain the following equality

‖ ă etUαf, f ąL2pM,volαq ‖L2pR,dtq “ ‖ 1

σ

ż σ

0

ă esXetUαf,
1

α
esXαf ąL2pM,volαq ds‖L2pR,dtq .

Thus, the preliminary assumptions are satisfied with B1 “
1
α
I and B2 “ αI.

Theorem 4. a. Any smooth time-change of an ergodic flow on M generated by a

non-central nilpotent element of a semisimple Lie algebra has absolutely continuous

spectrum on L2
0pM, volαq if ‖ Xα

α
‖8ă 1.

b. Any smooth time-change of a uniquely ergodic flow on M generated by a non-

central nilpotent element of a semisimple Lie algebra has absolutely continuous spec-

trum on L2
0pM, volαq.

Proof. (a)

piq Let f “ Uαg for g P C8pMq.

‖ Hptq
t

H´1f ‖L2pM,volαq“‖
Gpα, tq

t
Uαp´U

´1
α fq ‖L2pM,volαq

“‖ Gpα, tq
t

f ‖L2pM,volαqď 2 ‖ Gpαq ‖8 ¨ ‖ f ‖L2pM,volαqď 2 ‖ f ‖L2pM,volαq

29



Since the above holds for f P RanpUαq,
Hptq
t
H´1 extends to a bounded operator on

RanpUαq “ L2
0pM, volαq with uniformly bounded norm in t,

‖ Hptq
t

H´1 ‖opď 2.

Also,

‖ pI ´ Hptq

t
H´1

qf ‖L2pM,volαq“‖ p1`
Gpα, tq

t
qf ‖L2pM,volαq

“‖ p1` p1
t

ż t

0

p
Xα

α
´ 1q ˝ φUατ pxqdτqqf ‖L2pM,volαq

“‖ p1
t

ż t

0

Xα

α
˝ φUατ pxqdτqf ‖L2pM,volαqď‖ p

1

t

ż t

0

Xα

α
˝ φUατ pxqdτq ‖8 ¨ ‖ f ‖L2pM,volαq

ď‖ Xα
α

‖8 ¨ ‖ f ‖L2pM,volαqď‖ f ‖L2pM,volαq .

Since the above holds on RanpUαq the following is true on RanpUαq “ L2
0pM, volαq,

lim sup
tÑ8

‖ I ´ Hptq

t
H´1I ‖op“ lim sup

tÑ8
‖ I ` Gpα, tq

t
I ‖opă 1.

(ii) In the following calculation we use that

DhUαt pXq “ Gpα, tqUα ˝ h
Uα
t `X ˝ hUαt .

(Please see 6.3 for this computation.)

rX,
Hptq

t
H´1

s “ Xp
1

t

ż t

0

p
Xα

α
´ 1q ˝ φUατ qdτq ´ p

1

t

ż t

0

p
Xα

α
´ 1q ˝ φUατ qdτqX

“
1

t

ż t

0

pDφUατ pXq ˝ φ
Uα
´τ qp

Xα

α
q ˝ φUατ dτ “

1

t

ż t

0

pGpα, tqUα `Xqp
Xα

α
q ˝ φUατ dτ

“
1

t

ż t

0

Gpα, tqUαp
Xα

α
q ˝ φUατ pxqdτ `

1

t

ż t

0

Xp
Xα

α
q ˝ φUατ pxqdτ
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“
1

t

ż t

0

Gpα, tq
d

dτ
p
Xα

α
q ˝ φUατ pxqdτ `

1

t

ż t

0

Xp
Xα

α
q ˝ φUατ pxqdτ

We integrate

1

t

ż t

0

Gpα, tq
d

dτ
p
Xα

α
q ˝ φUατ pxqdτ

by parts,

1

t

ż t

0

Gpα, tq
d

dτ
p
Xα

α
q ˝ φUατ pxqdτ

“
Gpα, tq

t
p
Xα

α
q ˝ φUαt ´

1

t

ż t

0

p
Xα

α
´ 1qp

Xα

α
q ˝ φUατ pxqdτ,

and obtain the bound,

‖ 1

t

ż t

0

pGpα, tqUα `Xqp
Xα

α
q ˝ φUατ dτ ‖8

ď‖ Gpα, tq
t

p
Xα

α
q ‖8 ` ‖ 1

t

ż t

0

p
Xα

α
´ 1qp

Xα

α
q ˝ φUατ pxqdτ ‖8

` ‖ 1

t

ż t

0

Xp
Xα

α
q ˝ φUατ pxqdτ ‖8

ď 2 ¨ ‖ Xα
α
´ 1 ‖8 ¨ ‖ p

Xα

α
q ‖8 ` ‖ XpXα

α
q ‖8

ď 2p2q ` Cα

where Cα depends on the second derivative of α.

Since

rX,
Hptq

t
H´1

s

is the multiplication operator given by

p
1

t

ż t

0

pGpα, tqUα `Xqp
Xα

α
q ˝ φUατ dτq ¨ I,
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we obtain the following bound,

‖ rX, Hptq
t

H´1
sf ‖L2pM,volαqď‖

1

t

ż t

0

pGpα, tqUα`Xqp
Xα

α
q˝φUατ dτ ‖8 ¨ ‖ f ‖L2pM,volαq

ď p4` Cαq¨ ‖ f ‖L2pM,volαq .

Thus, rX, Hptq
t
H´1s extends to a bounded operator on RanpUαq with operator norm

uniformly bounded in t:

‖ rX, Hptq
t

H´1
s ‖opď 4` Cα

(iii)

‖ rHptq, HsH´1f ‖L2pM,volαq“‖ rGpα, tqUα,´Uαsp´U´1α fq ‖L2pM,volαq X

ď 2 ‖ Gpαq ‖8 ¨ ‖ f ‖L2pM,volαqď 2p2q¨ ‖ f ‖L2pM,volαq

“‖ rUαp
ż t

0

p
Xα

α
´1q˝φUατ dτqs¨f ‖L2pM,volαq“‖ r

ż t

0

d

dτ
p
Xα

α
´1q˝φUατ dτqs¨f ‖L2pM,volαq

ď‖ Gpαq ˝ φUαt ´Gpαq ‖8 ¨ ‖ f ‖L2pM,volαq

ď 2 ‖ Gpαq ‖8 ¨ ‖ f ‖L2pM,volαqď 2p2q¨ ‖ f ‖L2pM,volαq

The above holds on coboundaries of the form f “ Uαg, so onRanpUαq “ L2
0pM, volαq,

‖ rHptq, HsH´1 ‖opă 4.

Since conditions piq´piiiq of Theorem 3. are satisfied on RanpUαq, the time-changed

flow, tφUαt u, has purely absolutely continuous spectrum on RanpUαq “ L2
0pM, volαq.

This concludes the proof of part a.
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b. Now we assume that the flow tφUt u, and hence tφUαt u, are uniquely ergodic.

‖ pI ´ Hptq

t
H´1

qf ‖L2pM,volαq“‖ p1`
Gpα, tq

t
qf ‖L2pM,volαq

“‖ p1` p1
t

ż t

0

p
Xα

α
´ 1q ˝ φUατ pxqdτqqf ‖L2pM,volαq

“‖ p1
t

ż t

0

Xα

α
˝ φUατ pxqdτqf ‖L2pM,volαqď‖ p

1

t

ż t

0

Xα

α
˝ φUατ pxqdτq ‖8 ¨ ‖ f ‖L2pM,volαq .

If tφUαt u is uniquely ergodic, then the following converges uniformly,

lim
tÑ8

1

t

ż t

0

Xα

α
˝ φUατ dτ “

ż

M

Xα

α
dvolα “ 0,

and thus,

lim sup
tÑ8

‖ I ` Hptq

t
H´1 ‖opď lim sup

tÑ8
‖ p1

t

ż t

0

Xα

α
˝ φUατ pxqdτq ‖8

“‖
ż

M

Xα

α
dvolα ‖8“ 0.

Hence,

lim sup
tÑ8

‖ I ` Hptq

t
H´1 ‖opă 1

is satisfied on RanpUαq “ L2
0pM, volαq without imposing any further conditions on

Xα
α

. The remainder of the proof is the same as in a except that

‖ Xα
α

‖8“M

where M is finite but not necessary equal to 1.
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Theorem 5 (Maximal Spectral Type). The maximal spectral type of the uniqely

ergodic flow tφUαt u is Lebesgue on the subspace RanpUαq.

Proof. We follow the method in [8].

Lemma 1. [8] Suppose that the maximal spectral type of tφUαt u is not Lebesgue.

Then there exists a smooth non-zero function ω P L2pR, dtq such that for all functions

g P C8pMq the following holds:

ż

R
ωptq

ż σ

0

esXetUαUαgdsdt “ 0

Proof. Since the maximal spectral type is not Lebesgue, then there exists a compact

set A Ă R such that A has positive Lebesgue measure but measure 0 with respect

to the maximal spectral type. So we let ω P L2pRq be the complex conjugate

of the Fourier transform of the characteristic function χA of the set A Ă R. For

f, h P RanUα, let µf,h denote the joint spectral measure (which we know is absolutely

continuous with respect to Lebesgue since f, h P RanUα. Thus,

ż

R
ωptq ă etUαf, h ąL2pM,volq dt “

ż

R
χApξqdµf,hpξq “ 0.

In particular, when f “ Uαg we have

ż σ

0

ż

R
ωptq ă esXetUαUαg, h ąL2pM,volq dt ds “ 0

“ă

ż

R
ωptq

ż σ

0

esXetUαUαg ds dt, h ąL2pM,volq“ 0.
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Recall that satisfying conditions piq and piiq and piiiq in Theorem 3. results in the

bound

sup
sPr0,σs

‖
ż σ

0

esXetUαUαgds ‖L2pR,dtqď
Cσpαq

tβ
maxt‖ g ‖L2pMq, ‖ Xg ‖L2pMq, ‖ Uαg ‖L2pMqu

where β “ 1 and Cσpαq is a constant that depends on the time-change function α

and parameter σ ą 0.

Because
ż σ

0

esXetUαUαg ds

is bounded on M , it follows that

ż

R
ωptq

ż σ

0

esXetUαUαg ds dt

vanishes.

Lemma 2. [8] For ω P L2pR, dtq, for some x PM , and for all g P C8pMq,

ż

R
ωptq

ż σ

0

esXetUαUαgdsdt “ 0.

Thus, ω vanishes identically.

Proof. Fix x P M and σ ą 0. For any T ą 0, ρ ą 0, and 1
2
ą γ ą 0, let ET

ρ,σ be the

flow-box for the the flow tφUαt u defined as follows:

ET
ρ,σ “ pφ

Uα
t ˝ φXs ˝ φ

V
r qpxq, for all pr, s, tq P p´γ, γq ˆ p´ρ, ρq ˆ p´σ, σq.

For any χ P C80 p´1, 1q and any ψ P C80 p´T, T q, let
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g̃pr, s, tq :“ χp
r

ρ
qχp

s

σ
qψptq.

Let g P C8pMq such that g “ 0 on MzImpET
ρ,σq and

g ˝ ET
ρ,σ “

$

’

’

&

’

’

%

0 on MzImpET
ρ,σq

g̃pr, s, tq on ImpET
ρ,σq

Let Tρ,σ ą 0 be defined as:

Tρ,σ :“ mint|t| ą T : YsPr´σ,σspφ
Uα
t ˝ φXs qpxq X ImpE

T
ρ,σq ‰ ∅u

From unique ergodicity,

limρÑ0`Tρ,σ “ `8.

The composition of the flow box with Uαg and Xg follow from the commutation

relations:

pUαgq ˝ E
T
ρ,σ :“ χp

r

ρ
qχp

s

σ
q
dψptq

dt
ptq

and

pXgq ˝ ET
ρ,σ

:“
1

σ
χp
r

ρ
q
dχ

ds
p
s

σ
qψptq ´ p

ż t

0

p
Xα

α
´ 1q ˝ φUατ ˝ φXs ˝ φ

V
r pxqdτqχp

r

ρ
qχp

s

σ
q
dψ

dt
ptq. (3.1)

From the assumptions of Lemma 1 and by integrating p3.1q, we have

χp0q p

ż σ

0

χp
s

σ
q dsqp

ż T

´T

ωptq
dψptq

dt
dtq
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`

ż

Rzr´Tρ,σ ,Tρ,σs
ωptq

ż σ

0

esXetUαpUαgq ds dt “ 0. (3.2)

The bound Cσpαq of
ż σ

0

esXetUαUαgds

derived for the spectral results, combined with p3.1q and p3.2q, give us the following

L2 bound,

‖
ż σ

0

esXetUαUαgds ‖L2pR,dtqď
Cσpαq

t
maxt‖ g ‖8, ‖ Xg ‖8, ‖ Uαg ‖8u

ď
Cσpαq

t
maxt1, T u ˆmax 2

t‖ χ ‖L8pRq, ‖ χ1 ‖L8pRq, ‖ ψ ‖L8pRq, ‖ ψ1 ‖L8pRqu

Since the above bound is uniform with respect to ρ, we can conclude that the

following limit holds,

lim
ρÑ0`

ż

Rzr´Tρ,σ ,Tρ,σs
ωptq

ż σ

0

esXetUαpUαgqdsdt “ 0. (3.3)

Combining equation p3.2q with the limit result in p3.3q implies that

ż

R
ωptq

dψptq

dt
dt “ 0

and thus, ω ” 0.
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3.2 Time Changes of the Horocycle Flow - Compact and Finite Area

From the description in 1.5, it follows that time-changes of the horocycle flow are

special cases of Theorem 4, and thus, Theorem 5. When M is of finite volume,

thUαt u is ergodic, and when M is compact, thUαt u is uniquely ergodic. We state the

spectral results in the following Corollary.

Corollary 1. a. Any smooth time-change thUαt u of the horocycle flow on M (finite

volume) has absolutely continuous spectrum on L2
0pM, volαq if ‖ Xα

α
‖8ă 1.

b. Any smooth time-change thUαt u of the horocycle flow on M (compact) has

Lebesgue spectrum on L2
0pM, volαq.

38



3.3 Twisted Horocycle Flows

We would like to examine the conditions under which the spectral properties persist

or do not persist after we combine the horocycle time-change with a circle rotation.

Our new space is M̂ “ pΓzPSLp2,Rqq ˆ S1 for Γ a cocompact lattice. We define

the following operators:

X̂ “ pX, 0q where X is the generator of the geodesic flow.

V̂ “ pV, 0q where V is the generator of the negative horocycle flow.

d̂
dθ
“ p0, d

dθ
q where d

dθ
is a rotation on S1.

W “ pU, 0q ` p0, α d
dθ
q where U is the generator of the positive horocycle flow and

α “ αpxq, x P ΓzPSLp2,Rq, is the time change function as in 1.5.

Proposition 1. The flow tφWt u is uniquely ergodic.

Proof. Consider the time-change tφWα
t u “ 1

α
W “ Ûαˆ

d̂
dθ

. Since thUαt u is mixing [17],

then it is weakly mixing, and thus tφWα
t u is ergodic [5]. This implies the ergodicity

of tφWt u. Since tφWt u is ergodic and thUt u is uniquely ergodic [10], then from [9]

(applied to flows), tφWt u is uniquely ergodic.

We are interested in the spectrum of the flow tφWt u, so we compute the commutation

relations with X̂, (for details of the calculation, please see 6.4).

e´tW rX̂, etW s “ tW ` p

ż t

0

p
X̂α

α
´ 1q ˝ φWτ pxq dτq

d̂

dθ
“ Hptq

For u P C8pM̂q,
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lim
tÑ8

Hptq

t
u “ pW ´

ˆd

dθ
q u “ Hu

Since,

‖ xetWf, fy ‖L2pR,dtq “ ‖ 1

σ

ż σ

0

xesX̂etWf, esX̂fy ds‖L2pR,dtq,

the preliminary assumptions are satisfied with B1 “ B2 “ I and D “ C8pM̂q.

However, when we proceed with verifying the conditions for the functions in the

range of H, we are unable to extend pointwise bounds in L2 to uniform bounds in

the operator norm. For example,

Hptq

t
H´1

“ pW ` p
1

t

ż t

0

p
X̂α

α
´ 1q ˝ φWτ pxq dτq

d̂

dθ
qH´1

“ pH `
d̂

dθ
` p

1

t

ż t

0

p
X̂α

α
´ 1q ˝ φWτ pxq dτq

d̂

dθ
qH´1

“ pH ` p
1

t

ż t

0

X̂α

α
˝ φWτ pxq dτq

d̂

dθ
qH´1

“ I ` p
1

t

ż t

0

X̂α

α
˝ φWτ pxq dτq

d̂

dθ
H´1

Since d̂
dθ

commutes with everything, we can restrict to the subspace

En “ t
d̂

dθ
u “ inuu

since it is invariant under all of the operators.

For f “ Hg, f, g P C8pMq,

‖ pI ` p1
t

ż t

0

X̂α

α
˝ φWτ pxq dτqinH

´1
qg ‖L2pM̂q
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“‖ g ` p1
t

ż t

0

X̂α

α
˝ φWτ pxq dτqinH

´1g ‖L2pM̂q

“‖ g ` p1
t

ż t

0

X̂α

α
˝ φWτ pxq dτqinf ‖L2pM̂q

ď‖ g ‖L2pM̂q ` ‖ p1
t

ż t

0

X̂α

α
˝ φWτ pxq dτqinf ‖L2pM̂q

ď‖ g ‖L2pM̂q ` nCα¨ ‖ f ‖L2pM̂q

since in the compact setting

Cα “‖
X̂α

α
‖8ă 8.

Because we have an L2 bound in terms of both ‖ g ‖L2pM̂q and ‖ f ‖L2pM̂q“‖

Hg ‖L2pM̂q, we are unable to extend this to a bound in the operator norm.

Instead we modify our operators by introducing an operator P , defined in such a

way that it not only acts as a projection operator but also preserves regularity.

Let χ P C80 pRzt0uq such that the support of χ is compact subset of the spectrum of

H away from 0. For f, g P L2pM̂q,

xPf, gyL2pM̂q “

ż

R
χpxqdµf,gpxq

“

ż

R
χ̂ptq ˆµf,gptq dt “

ż

R
χ̂ptqxetHf, gyL2pM̂q dt

since H is a vector field, and thus,

Pf “

ż

R
χ̂ptqetHf dt.
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The decay of etHf “ f ˝ φHt is at most polynomial in t, however, since χ P C80 pM̂q,

χ̂ P SpRq, and thus, must decay faster than any power of 1
t
. In this way, we guarantee

that

P : C8 Ñ C8.

Now we introduce our modified operators.

X̂p “ PX̂P

e´tW rXP , e
tW
s “ Pe´tW rX, etW sP “ PHptqP “ HP ptq

For u P C8pM̂q,

lim
tÑ8

HP ptq

t
u “ PHPu “ HP 2u “ HPu.

Note that now HP is a bounded, invertible operator. Let

CHP “‖ HP ‖op

C´1HP “‖ H
´1
P ‖op

Ck
P “‖ P k ‖op

CP
H “‖ HP ‖op

and

C
1

α “‖ α ‖8 .

Theorem 6. The flow tφWt u has absolutely continuous spectrum on RanpHq.
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Proof. We will verify the conditions of Theorem 3. on each subspace

En “ t
d̂

dθ
u “ inuu.

piq

Hptq

t
“ W ` p

1

t

ż t

0

p
X̂α

α
´ 1q ˝ φWτ pxq dτqin

“ H ` in` p
1

t

ż t

0

X̂α

α
˝ φWτ pxq dτqin` p

1

t

ż t

0

´1 ˝ φWτ pxq dτqin

“ H ` in` p
1

t

ż t

0

X̂α

α
˝ φWτ pxq dτqin´ in

“ H ` p
1

t

ż t

0

X̂α

α
˝ φWτ pxq dτqin “ H `

Lptq

t
in

Let f “ Hpg,

‖ Hpptq

t
H´1
p f ‖L2pM̂q“‖

Hpptq

t
g ‖L2pM̂q

“‖ Hpg ` inP
Lptq

t
Pg ‖L2pM̂qď‖ Hpg ‖L2pM̂q ` ‖ inP Lptq

t
Pg ‖L2pM̂q

ď CHp ‖ g ‖L2pM̂q ` npC
1
P q

2 ‖ X̂α
α

‖8‖ g ‖L2pM̂q

“ pCHP ` npC
1
P q

2Cαq ‖ g ‖L2pM̂q .

So,

‖ Hpptq

t
H´1
p ‖opď pCHP ` npC1

P q
2Cαq.

Also,

‖ pI ´ Hpptq

t
H´1
p qf ‖L2pM̂q“‖ pI ´ I ´ inP

Lptq

t
P qf ‖L2pM̂q

“‖ inP Lptq
t
Pf ‖L2pM̂qď npC1

P q
2 ‖ Lptq

t
‖8 ¨ ‖ f ‖L2pM̂q

Since tφWt u is uniquely ergodic, the following converges uniformly,

lim
tÑ8

1

t

ż t

0

X̂α

α
˝ φWτ pxq dτ “ lim

tÑ8

Lptq

t
“ 0.
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So,

lim sup
tÑ8

‖ I ´ Hpptq

t
H´1
p ‖opď lim sup

tÑ8
npC1

P q
2 ‖ Lptq

t
‖8“ 0,

and hence,

lim sup
tÑ8

‖ I ´ Hpptq

t
H´1
p ‖opă 1.

piiq

rX̂P ,
Hpptq

t
pHP q

´1
s

“ P rX̂, P sP
Hptq

t
PH´1

P
loooooooooooomoooooooooooon

a

`P 2
rX̂, P s

Hptq

t
PH´1

P
loooooooooooomoooooooooooon

b

`P 3
rX̂,

Hptq

t
sPH´1

P
loooooooooomoooooooooon

c

`P 3Hptq

t
rX̂, P sH´1

P
loooooooooomoooooooooon

d

`P 3Hptq

t
P rX̂,H´1

P s
loooooooooomoooooooooon

e

rX̂, P sf “

ż

R
χ̂ptqrX̂, etHsf dt

“

ż

R
χ̂ptqetW e´tW rX̂, etH`tin´tinsf dt

“

ż

R
χ̂ptqetW e´tW rX̂, etW se´itnf dt

“

ż

R
χ̂ptqetWHptqe´itnf dt

“

ż

R
χ̂ptqetW tWe´itnf dt`

ż

R
χ̂ptqetW pLptq ´ tqe´itnf dt

“

ż

R
χ̂ptqe´itnt

d

dt
petWfq dt`

ż

R
χ̂ptqetW pLptq ´ tqe´itnf dt.

The first term we integrate by parts:

χ̂ptqe´itnt χ̂
1

ptqe´itnt` χ̂ptqe´itn ´ inχ̂ptqe´itnt

etWf
d

dt
petWfq

ż

R
χ̂ptqe´itnt

d

dt
petWfq dt
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“ χ̂ptqe´itntetWf

∣∣∣∣´8
8

`

ż

R
pχ̂

1

ptqe´itnt` χ̂ptqe´itn ´ inχ̂ptqe´itntqetWf dt

“

ż

R
pχ̂

1

ptqe´itnt` χ̂ptqe´itn ´ inχ̂ptqe´itntqetWf dt

So,

‖
ż

R
pχ̂

1

ptqe´itnt` χ̂ptqe´itn ´ inχ̂ptqe´itntqetWf dt ‖L2pM̂q

ď p

ż

R
|χ̂
1

ptqt| dt`

ż

R
|χ̂ptq| dt`

ż

R
|nχ̂ptq| dtq ‖ f ‖L2pM̂qď C1 ‖ f ‖L2pM̂q .

The boundedness of the second term follows immediately,

‖
ż

R
χ̂ptqetW pLptq ´ tqe´itnf dt ‖L2pM̂q

ď

ż

R
|χ̂ptqpLptq ´ tq| dt ‖ f ‖L2pM̂qď C2 ‖ f ‖L2pM̂q .

Thus,

‖ rX̂, P sf ‖L2pM̂qď pC1 ` C2q ‖ f ‖L2pM̂q“ C ‖ f ‖L2pM̂q,

and hence,

‖ rX̂, P s ‖opď C.

Also,

rX̂,
Hptq

t
sP “ rX̂,W sP ` rX̂,

ż t

0

p
X̂α

α
´ 1q ˝ φWτ pxq dτ insP

“ pÛ ` X̂α inqP ` rX̂,

ż t

0

p
X̂α

α
´ 1q ˝ φWτ pxq dτ insP

“ pÛ ` pα ´ 1qin´ pα ´ 1qin` X̂α inqP ` rX̂,

ż t

0

p
X̂α

α
´ 1q ˝ φWτ pxq dτ insP

“ HP ` pX̂α´ α ` 1q inP ` rX̂,

ż t

0

p
X̂α

α
´ 1q ˝ φWτ pxq dτ insP

In order to bound the following term,

rX̂,

ż t

0

p
X̂α

α
´ 1q ˝ φWτ pxq dτ ins
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we need the following,

DφWt pXq “ tW ˝ φWt ` p

ż t

0

p
X̂α

α
´ 1q ˝ φWτ pxq dτq in ˝ φ

W
t

(Please see 6.4 for this derivation.) Let

Gpα, tq “

ż t

0

p
X̂α

α
´ 1q ˝ φWτ pxq dτ.

rX̂,

ż t

0

p
X̂α

α
´ 1q ˝ φWτ pxq dτ ins

“ X̂p
1

t

ż t

0

p
X̂α

α
´ 1q ˝ φWτ qpxq dτqin´ p

1

t

ż t

0

p
X̂α

α
´ 1qφWτ qpxq dτqX̂in

“
1

t

ż t

0

pDφWτ pX̂q˝φ
W
´τ qp

X̂α

α
q˝φWτ pxqdτ in “

1

t

ż t

0

ptW`Gpα, tqinqp
X̂α

α
q˝φWτ pxqdτ in

“ p
X̂α

α
˝ φWt ´

X̂α

α
qin` p

1

t

ż t

0

Gpα, tqp
X̂α

α
q ˝ φWτ pxq dτ inqin

So,

‖ 1

t

ż t

0

ptW `Gpα, tqinqp
X̂α

α
q ˝ φWτ dτ ‖8

ď 2n ¨ ‖ X̂α
α

‖8 ` n2
¨ ‖ Gpα, tq

t
¨
X̂α

α
‖8

ď 2n ¨ ‖ X̂α
α

‖8 ` n2
¨ ‖ pX̂α

α
´ 1q ¨

X̂α

α
‖8

ď 2n ¨ ‖ X̂α
α

‖8 ` n2
¨ ‖ pX̂α

α
´ 1q ‖8‖

X̂α

α
‖8

ď 2nCα ` n
2
pCα ` 1qCα.

Thus, rX̂, Hptq
t
sP extends to a bounded operator on RanpHpq with operator norm

uniformly bounded in t:

‖ rX̂, Hptq
t
sP ‖opď pCP

H ` npC
1

αCα ` C
1

α ` 1qC1
P q ` p2nCα ` n

2
pCα ` 1qCαqC

1
P .

a:

‖ P rX̂, P sP Hptq
t

PH´1
P ‖opď C1

P ¨ C¨ ‖
HP ptq

t
H´1
P ‖op
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ď C1
P ¨ C ¨ pCHP ` npC

1
P q

2Cαq.

b :

‖ P 2
rX̂, P s

Hptq

t
PH´1

P ‖op“‖ P 2
rX̂, P spH `

Lptq

t
inqPH´1

P ‖op

ď C2
P ¨ C ¨ p‖ HP ‖op ` n ‖ X̂α

α
‖8 C1

P q¨ ‖ H´1
P ‖op

“ C2
P ¨ C ¨ pC

P
H ` nCαC

1
P qC

´1
HP

c :

‖ P 3
rX̂,

Hptq

t
sPH´1

P ‖op

ď C3
P ppC

P
H ` npC

1

αCα ` C
1

α ` 1qC1
P q ` p2nCα ` n

2
pCα ` 1qCαqC

1
P qC

´1
HP
.

d :

‖ P 3Hptq

t
rX̂, P sH´1

P ‖opď C2
P ¨ C ¨ pC

P
H ` nC

1
PCαqC

´1
HP

e :

rX̂,H´1
P s “ H´1

P rHP , X̂sH
´1
P

“ H´1
P rP, X̂sPHH

´1
P `H´1

P P rP, X̂sHH´1
P `H´1

P P 2
rX̂,HsH´1

P .

‖ rX̂,H´1
P s ‖op

ď C´1HP ¨C ¨C
P
HC

´1
HP
`C´1HPC

1
P ¨C ¨ pC

2
P q
´1
`C´1HP pCHP `C

2
PnpC

1

αCα `C
1

α ` 1qqC´1HP .

‖ P 3Hptq

t
P rX̂,H´1

P s ‖op

ď C2
P pCHP ` npC

1
P q

2CαqpC
´1
HP
¨ C ¨ CP

HC
´1
HP
` C´1HPC

1
P ¨ C ¨ pC

2
P q
´1

`C´1HP pCHP ` C
2
PnpC

1

αCα ` C
1

α ` 1qqC´1HP q.

piiiq.

rHpptq, HP sH
´1
P “ rtHp ` PLptqPin,HP sH

´1
p “ rPLptqP,HP sH

´1
P .
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“ P 3HLptqPinH´1
P “ P 3WLptqPinH´1

P ´ P 3inP inH´1
P

“ P 3
p
X̂α

α
˝ φWt ´

X̂α

α
qinH´1

P ´ P 3inP inH´1
P .

‖ rHpptq, HP sH
´1
P ‖op

ď 2nC3
PCαC

´1
HP
` n2C4

PC
´1
HP
.

We have shown that the conditions of Theorem 3 are satisfied on RanpHP q. We

would like to extend this to RanpHq. Recall that HP depends upon a choice of

χ P C80 pRzt0uq. For f P DompHq, we can express the following in terms of integrals

involving the spectral projector as

Hf “

ż

R
x dEpxqf,

HPf “

ż

R
xχpxq dEpxqf,

and since f P DompHq,
ż

R
x2 dEpxqf ă `8.

Let χ be such that

χpxq “ 1 for x P p´K,´εq Y pε,Kq “ Iε,K

and supppχq vanishes outside of Iε,K . Since on Iε,K ,

HPf “ Hf,

we consider

HPf ´Hf

on RzIε,K , i.e.,
ż

RzIε,K
xpχpxq ´ 1q dEpxqf.
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For |x| ď ε,

lim
εÑ0

‖
ż

|x|ďε

xpχpxq ´ 1q dEpxqf ‖2L2pRq“ lim
εÑ0

ż

|x|ďε

|xpχpxq ´ 1q|2 dEpxqf

ď lim
εÑ0

4ε2
ż

|x|ďε

dEpxqf ď lim
εÑ0

4ε2 ‖ f ‖L2pM̂q“ 0.

For |x| ě K,

lim
KÑ8

‖
ż

|x|ěK

xpχpxq ´ 1q dEpxqf ‖2L2pRq“ lim
KÑ8

ż

|x|ěK

|xpχpxq ´ 1q|2 dEpxqf

ď lim
KÑ8

ż

|x|ěK

4x2 dEpxqf “ 0

since
ż

R
x2 dEpxqf ă `8.

Thus,

inf
χPC80 pRzt0uq

‖ HPf ´Hf ‖L2pM̂q“ 0.

So, for any Hf , there exists a sequence tHPnu such that

HPn Ñ Hf,

and thus,

RanpHq “ t
ď

P

RanpHP qu.

Consequently, for every f P RanpHq, µf is absolutely continuous.
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Chapter 4: Applications to Maps

The author in [29] uses the Mourre Estimate technique (described in 1.5.1) to prove

the following spectral results. Here we rederive these results by showing that the

conditions of the Theorem 3. are satisfied.

4.1 Skew Products over Translations

Let X be a compact metric abelian Lie group with normalized Haar measure µ. Let

tFtu be a uniquely ergodic [9] translation flow (we assume that F1 is ergodic),

Ft “ ytx with vector field Y .

The associated operators tVtu are given by

Vtψ “ ψ ˝ Ft with generator P “ ´iLY .

Let G be a compact metric abelian group. Let φ : X Ñ G such that φ can be

written as φ “ ξη where ξ is a group homomorphism and η satisfies

sup
tą0

‖ LY pχ ˝ ηq ˝ Ft ´LY pχ ˝ ηq

t
q ‖8ă 8

and

χ ˝ η “ eiη̃χ
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for η̃χ P DompP q a real-valued function determined by χ and η.

The skew product, T : X ˆGÑ X ˆG, is defined by

T px, zq “ py1x, φpxqzq

with corresponding unitary operator

WΨ “ Ψ ˝ T .

Let Ĝ be the character group of G. The decomposition L2pX ˆ Gq “
À

χPĜ Lχ

and the restriction of W to the subspaces Lχ allow us to study the spectrum of

convenient, unitarily equivalent operators to W |Lχ , namely,

Uχψ “ pχ ˝ ψqV1ψ (here Uχ takes the place of eU as given in the conditions)

for χ ˝ ξ ı 1.

We will choose to take the commutator with P ; from [1], P is essentially self-adjoint.

Let D “ C8pXq.

Remark: Describing these systems in full generality inevitably leads to cumbersome

notation. In an effort to simplify the reading, we provide the following example:

Let X,G “ S1. For x P X and z P G and α P S1,

T px, zq “ pαx, φpxqzq.

φ “ eiφ̃, and η “ eiη̃, for φ̃ and η̃ real valued functions.

χpyq “ yk for k P Zzt0u, and thus, χ ˝ φ “ eikφ̃ and χ ˝ η “ eikη̃.
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Uχψ “ eikφ̃pxqψpαxq

P “ ´i
d

dx
.

Now we compute the commutators using the general notation.

rP,Uχs “ rP, pχ ˝ φqV1s “ rP, pχ ˝ φqIsV1

“ ´iLY pχ ˝ φqV1 “ ´irLY pχ ˝ ξqpχ ˝ ηq ` pχ ˝ ξqLY pχ ˝ ηqsV1

“ ´irξ0 `
LY pχ˝ηq
pχ˝ηq

spχ ˝ φqV1 “ ´irξ0 `
LY pχ˝ηq
pχ˝ηq

sUχ

where ξ0 “
d
dt
pχ ˝ ξqpytq|t“0 P iRzt0u.

So,

rP,Uχs “ p´iξ0 ´
iLY pχ ˝ ηq

pχ ˝ ηq
qUχ “ GUχ.

Thus,

U´nχ rP,Un
χ s “

řn
k“1 U

´k
χ GUk

χ “

n
ÿ

k“1

p´iξ0 ´
iLY pχ ˝ ηq

pχ ˝ ηq
q ˝ F´k “

n
ÿ

k“1

G ˝ F´k “ Hpnq.

Note that

´iLY pχ ˝ ηq

pχ ˝ ηq
“
´iLY pe

iη̃χq

eiη̃χ
“
´ieiη̃χ ¨LY pη̃χq

eiη̃χ
“ ´iLY pη̃χq “ P η̃χ

From unique ergodicity we get the following convergence

lim
nÑ8

Hpnq

n
u “ p´iξ0 `

ż

X

P η̃χ dµqu “ ´iξ0u “ Hu

uniformly in n for u P Lχ.
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Since

‖ ă Un
χf, f ąLχ ‖`2pZq “ ‖ 1

σ

ż σ

0

ă esPUn
χf, e

sPf ąLχ ds ‖`2pZq .

the preliminary assumptions are satisfied with B1 “ B2 “ I.

piq It is unnecessary to consider coboundaries since both H “ ´iξ0I and H´1 “ i
ξ0
I

are constants. Instead we take any f P Lχ.

Hpnq

n
H´1f “ p

1

n

n
ÿ

k“1

p´iξ0 ´
iLY pχ ˝ ηq

pχ ˝ ηq
q ˝ F´kq ¨

i

ξ0
f “ f ` p

1

n

n
ÿ

k“1

P η̃χ ˝ F´kq ¨
i

ξ0
f.

So,

‖ Hpnq
n

H´1f ‖Lχď p1`
‖ P η̃χ ‖Lχ
|ξ0|

q¨ ‖ f ‖Lχ .

Since η̃χ P DompP q,

‖ P η̃χ ‖Lχď C1.

Thus, Hpnq
n
H´1 is a bounded operator with uniformly bounded norm in n,

‖ HpnqH
´1

n
‖opď 1`

C1

|ξ0|
.

Also,

‖ pI ´ Hpnq

n
H´1

qf ‖Lχ“‖ p1´ p1` p
1

n

n
ÿ

k“1

P η̃χ ˝ F´kq ¨
i

ξ0
qf ‖Lχ

“‖ p 1
n

n
ÿ

k“1

P η̃χ ˝ F´k ¨
i

ξ0
qf ‖Lχď‖ p

1

n

n
ÿ

k“1

P η̃χ ˝ F´kq ¨
i

ξ0
‖8 ¨ ‖ f ‖Lχ .

As a result of unique ergodicity, the following converges uniformly,

lim
nÑ8

p
1

n

n
ÿ

k“1

P η̃χ ˝ F´kq ¨
i

ξ0
“

i

ξ0

ż

X

P η̃χ dµ “ 0,

53



and thus,

lim sup
nÑ8

‖ I ´ Hpnq

n
H´1 ‖opď lim sup

nÑ8
‖ p 1
n

n
ÿ

k“1

P η̃χ ˝ F´kq ¨
i

ξ0
‖8

“‖ i

ξ0

ż

X

P η̃χ dµ ‖8“ 0.

Hence,

lim sup
nÑ8

‖ I ` Hpnq

n
H´1 ‖opă 1.

piiq

rP,
Hpnq

n
H´1

s “ rP, I ` p
1

n

n
ÿ

k“1

P η̃χ ˝ F´kq ¨
i

ξ0
Is “ rP, p

1

n

n
ÿ

k“1

P η̃χ ˝ F´kq ¨
i

ξ0
Is

“ p
1

n

n
ÿ

k“1

P pP η̃χq ˝ F´kq ¨
i

ξ0
I.

Since suptą0 ‖
LY pχ˝ηq˝Ft´LY pχ˝ηq

t
q ‖8ă 8, P pP η̃χq is bounded in Lχ and

‖ rP, Hpnq
n

H´1
sf ‖Lχď

‖ P pP η̃χq ‖Lχ
|ξ0|

¨ ‖ f ‖Lχď
C2

|ξ0|
‖ f ‖Lχ .

Thus, rP, Hpnq
n
H´1s extends to a bounded operator on Lχ with uniformly bounded

norm in n,

‖ rP, Hpnq
n

H´1
s ‖opď

C2

|ξ0|
.

.

piiiq Since the operator H is just multiplication by the constant ´iξ0,

rHpnq, HsH´1 “ 0.

Thus, condition piiiq is immediately satisfied.

Since conditions piq, piiq, and piiiq of Theorem 3 are satisfied on each Lχ, we

have shown that the operator Uχ has purely absolutely continuous spectrum on
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Lχ. Thus, W has purely absolutely continuous spectrum when restricted to the

subspace
À

χPĜ,χ˝ξı1 Lχ.

In addition, from the purity law in [14] extended to translations, the maximal spec-

tral type is either purely Lebesgue, purely singularly continuous, or purely discrete

with respect to µ (the Haar measure). Since we know that the spectrum is absolutely

continuous from above, we have rederived the following result from [29],

Theorem 7. The operator Uχ has Lebesgue spectrum on Lχ. Thus, W has countable

Lebesgue spectrum when restricted to the subspace
À

χPĜ,χ˝ξı1 Lχ.

4.2 Furstenberg Transformations

Let µn be the normalized Haar measure on Tn » Rn{Zn and Hn “ L2pTn, µnq. Let

Td : Td Ñ Td, d ě 2, be the uniquely ergodic map [9]

Tdpx1, x2, ..., xdq “

px1 ` y, x2 ` b2,1x1 ` h1px1q, ..., xd ` bd,1x1 ` ¨ ¨ ¨ ` bd,d´1xd´1 ` hd´1px1, x2, ..., xd´1qq

(mod Zd)

for y P RzQ, bj,k P Z, bl,l´1 ‰ 0, and l P t2, ..., du. (For n “ 2, we get the skew

product in 4.1). Let each hj : Tj Ñ R satisfy a uniform Lipschitz condition in xj

and be in C2pTjq. What follows is very similar to the case of the skew products over

translations. We begin by considering the operator

Wd : Hd Ñ Hd.
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The space Hd can be decomposed into

Hd “ H1

À

jPt2,...du, kPZzt0uHj,k

for Hj,k “ Spantη
Â

χk|η P Hj´1u and χkpxjq “ e2πikxj P T̂.

The restriction of Wd, Wd|Hj,k
is unitarily equivalent to the operator

Uj,kη “ e2πikφjWj´1η

for η P Hj´1 and φjpx1, x2, ..., xj´1q “ bj,1x1`¨ ¨ ¨` bj,j´1xj´1`hj´1px1, x2, ..., xj´1q.

We will choose to take the commutator with Pj´1 “ ´iBj´1, the essentially self-

adjoint [1] generator of the translation group tVt,j´1utPR in Hj´1. Let D “ C8pTj´1q.

rPj´1, Uj,ks “ rPj´1, e
2πikφjIsWj´1

“ ´iBj´1pe
2πikφjqWj´1 “ p2πkbj,j´1 ` 2πkBj´1hj´1qe

2πikφjWj´1.

So,

rPj´1, Uj,ks “ p2πkbj,j´1 ` 2πkBj´1hj´1qUj,k “ GUj,k.

Thus,

U´nj,k rPj,k, U
n
j,ks “ p

n
ÿ

l“1

U´lj,kGU
l
j,kq “ p

n
ÿ

l“1

G ˝ T´lj´1q “ Hpnq.

From unique ergodicity we get the following convergence

lim
nÑ8

Hpnq

n
u “ 2πkbj,j´1 ` 2πk

ż

Tj´1

Bj´1hj´1 dµ “ 2πkbj,j´1u “ Hu

uniformly in n for u P D “ Hj´1.
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Since

‖ ă Un
j,kf, f ąHj´1

‖`2pZq “ ‖ 1

σ

ż σ

0

ă esPj´1Un
j,kf, e

sPj´1f ąHj´1
ds ‖`2pZq .

the preliminary assumptions are satisfied with B1 “ B2 “ I.

piq It is unnecessary to consider coboundaries since both H “ 2πkbj,j´1I and H´1 “

1
2πkbj,j´1

I are constants. Instead we take any f P Hj´1.

Hpnq

n
H´1f “ p

1

n
p

n
ÿ

l“1

p2πkbj,j´1 ` 2πkBj´1hj´1q ˝ T
´l
j´1qq ¨

1

2πkbj,j´1
f

“ f ` p
1

n

n
ÿ

l“1

p2πkBj´1hj´1q ˝ T
´l
j´1q

1

2πkbj,j´1
f.

Hence,

‖ Hpnq
n

H´1f ‖Hj´1
ď p1`

‖ 2πkBj´1hj´1 ‖Hj´1

|2πkbj,j´1|
q ‖ f ‖Hj´1

.

Since hj´1 satisfies a uniform Lipschitz condition in xj´1,

‖ Bj´1hj´1 ‖Hj´1
ď C1.

So Hpnq
n
H´1 extends to a bounded operator on Hj,k with uniformly bounded norm

in n,

‖ Hpnq
n

H´1 ‖opď 1`
|2πk| ‖ Bj´1hj´1 ‖Hj´1

|2πkbj,j´1|
ď

C1

|bj,j´1|
.

Also,

‖ pI ´ Hpnq

n
H´1

qf ‖Hj´1
“‖ p1´ p1` p 1

n

n
ÿ

l“1

p2πkBj´1hj´1q ˝ T
´l
j´1q

1

2πkbj,j´1
qf ‖Hj´1

“‖ p 1
n

n
ÿ

l“1

p2πkBj´1hj´1q ˝ T
´l
j´1q

1

2πkbj,j´1
f ‖Hj´1
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ď‖ p 1
n

n
ÿ

l“1

p2πkBj´1hj´1q ˝ T
´l
j´1q

1

2πkbj,j´1
‖8 ¨ ‖ f ‖Hj´1

.

As a result of unique ergodicity, the following converges uniformly,

lim
nÑ8

p
1

n

n
ÿ

l“1

p2πkBj´1hj´1q ˝ T
´l
j´1q

1

2πkbj,j´1
“

1

bj,j´1

ż

Tj´1

Bj´1hj´1 dµ “ 0,

and thus,

lim sup
nÑ8

‖ I ´ Hpnq

n
H´1 ‖opď lim sup

nÑ8
‖ p 1
n

n
ÿ

l“1

p2πkBj´1hj´1q ˝ T
´l
j´1q

1

2πkbj,j´1
‖8

“‖ 1

bj,j´1

ż

Tj´1

Bj´1hj´1 dµ ‖8“ 0

Hence,

lim sup
nÑ8

‖ I ` Hpnq

n
H´1 ‖opă 1.

piiq

rPj´1,
Hpnq

n
H´1

s “ rPj´1, I ` p
1

n

n
ÿ

k“1

p2πkBj´1hj´1q ˝ T
´l
j´1q ¨

1

2πkbj,j´1
Is

“ rPj´1, p
1

n

n
ÿ

k“1

p2πkBj´1hj´1q ˝ T
´l
j´1q ¨

1

2πkbj,j´1
Is

“ p
1

n

n
ÿ

k“1

p2πkBj´1pBj´1hj´1qq ˝ T
´l
j´1q ¨

1

2πkbj,j´1
I.

Since hj´1 P C
2pTj´1q, Bj´1pBj´1hj´1q is bounded in Hj´1,

‖ rP, Hpnq
n

H´1
sf ‖Hj´1

ď
|2πk| ‖ Bj´1pBj´1hj´1q ‖Hj´1

|2πkbj,j´1|
¨ ‖ f ‖Hj´1

ď
C2

|bj,j´1|
‖ f ‖Hj´1

.

Thus, rP, Hpnq
n
H´1s extends to a bounded operator on Hj´1 with uniformly bounded

norm in n,

‖ rP, Hpnq
n

H´1
s ‖opď

C2

|bj,j´1|
.
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piiiq Since the operator H is just multiplication by 2πkbj,j´1,

rHpnq, HsH´1 “ 0.

Thus, condition piiiq is immediately satisfied.

Since conditions piq, piiq, and piiiq of Theorem 1. are satisfied, we obtain the fol-

lowing result. The operator Uj,k has purely absolutely continuous spectrum on each

Hj,k. Thus, Wd has purely absolutely continuous spectrum on the orthocomplement

of H1.

Again from the purity law in [14], we rederive the following result from [29].

Theorem 8. Wd has countable Lebesgue spectrum on the orthocomplement of H1.
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Chapter 5: Open Questions

5.1 Further Study of the Twisted Horocycle Flow

The properties of the subspace RanpHq are linked to the properties of the cocyle

a “

ż t

0

pα ´ 1q ˝ hUs pxqds

since

φHt px, θq “ ph
U
t pxq, θ `

ż t

0

pα ´ 1q ˝ hUs pxqdsq.

To help understand the properties of a, it may be useful to consider both Anzai’s

Theorem [3] and results from the theory of Essential Values [26].

Also, we would like to determine the maximal spectral type on RanpHq.

5.2 Time-Changes of Nilflows

The 3-dimensional Heisenberg Group is a connected, simply connected, Lie Group

whose Lie Alebra is generated by two elements X, Y that satisfy the following com-

mutation relations:

rX, Y s “ Z and rX,Zs “ rY, Zs “ 0.
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In [4], the authors show that any nontrivial time-change of a uniquely ergodic Heisen-

berg nilflow is mixing. They mention that it is still unknown whether the spectrum

of mixing time-changes is singularly continuous, absolutely continuous, or possibly

mixed.

This is an example of when the best possible upper bound when satisfying the

conditions of Theorem 3 is achieved with β “ 1
2
, for which we cannot determine

square-integrability of the spectral measure. It is of interest to develop tools to

include such borderline cases.
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Appendix 6: Appendix

6.1 Detailed Computation for Resolvent Estimates for the Horocycle

Flow

We will use the following important identities,

d

dz
Rpzq “

d

dz
piU ´ zq´1 “ ´piU ´ zq´2 ¨ ´1 “ piU ´ zq´2 “ Rpzq2,

rRpzq, Xs “ RpzqX ´XRpzq

“ RpzqXpiU ´ zqRpzq ´RpzqpiU ´ zqXRpzq

“ RpzqXiURpzq ´RpzqiUXRpzq “ RpzqrX, iU sRpzq

and since rX, iU s “ iU,

z
d

dz
Rpzq “ rRpzq, Xs ´Rpzq.

For f P DompXq,

z
d

dz
F pzq “ ´F pzq´ ă Rpzqf,Xf ą ` ă Xf,Rpzqf ą .

Let ‖ ¨ ‖“‖ ¨ ‖L2pM,volq. Given our choice of z, the following equality holds,

‖ Rpzqf ‖“‖ Rpzqf ‖“ µ´
1
2 ¨ |ImF pzq|

1
2 .
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Using the above bound, we have the following inequality,

|
d

dµ
F pλ` iµq| ď |z|´1p‖ Rpzqf ‖ ¨ ‖ f ‖ ` ‖ Rpzqf ‖ ¨ ‖ Xf ‖ ` ‖ Rpzqf ‖ ¨ ‖ f ‖q

“ |z|´1p‖ f ‖ `2 ‖ Xf ‖q ‖ Rpzqf ‖

ď |λ|´1p‖ f ‖ `2 ‖ Xf ‖q ¨ µ´
1
2 |F pλ` iµq|

1
2 . (6.1)

We divide both sides by |F pλ ` iµq|
1
2 , and since |F pλ ` iµq|

1
2 “ |F pλ ` iµq

1
2 |, we

obtain, after integrating with respect to µ for 0 ă µ ă 1,

|F pλ` iµq|
1
2 ´ |F pλ` ixq|

1
2 ď

ż µ

x

|
d

dµ
F pλ` iµq|

1
2dµ ď 2|λ|´1p‖ f ‖ `2 ‖ Xf ‖qµ

1
2 .

Since the right hand side is maximized when µ “ 1,

|F pλ` iµq|
1
2 ď |F pλ` iq|

1
2 ` 2|λ|´1p‖ f ‖ `2 ‖ Xf ‖q.

We use this to bound the right hand side of (1).

|λ|´1p‖ f ‖ `2 ‖ Xf ‖qµ´
1
2 |F pλ` iµq|

1
2

ď |λ|´1p‖ f ‖ `2 ‖ Xf ‖qµ´
1
2 p|F pλ` iq|

1
2 ` 2|λ|´1p‖ f ‖ `2 ‖ Xf ‖qq

“ p
‖ f ‖
|λ|´1

` 2
‖ Xf ‖
|λ|´1

qµ´
1
2 p|F pλ` iq|

1
2 ` |p2

‖ f ‖
|λ|´1

` 4
‖ Xf ‖q
|λ|´1

q.

Let

a “
‖ f ‖
|λ|´1

b “
‖ Xf ‖
|λ|´1
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c “ |F pλ` iq|
1
2

Now we have

µ´
1
2 pa` 2bqpc` 2a` 4bq “ µ´

1
2 pac` 2a2 ` 4ab` 2bc` 4ab` 8b2q

“ µ´
1
2 p
a2c

a
` 2a2 `

8a2b

a
`

2b2c

b
` 8b2q

“ µ´
1
2 pa2p

c

a
` 2`

8b

a
q ` b2p

2c

b
` 8qq.

Let

M “ maxtpa2p
c

a
` 2`

8b

a
q, p

2c

b
` 8qu.

Since λ is bounded away from 0, the following inequality holds,

|
d

dµ
F pλ` iµq| ď

M
?
µ
p‖ f ‖2 `2 ‖ Xf ‖2q.

The above inequality enables us to show the following is finite,

ż 1

0

|
d

dµ
F pλ` iµq| dµ ď

ż 1

0

M
?
µ
p‖ f ‖2 `2 ‖ Xf ‖2q dµ

“ 2Mp‖ f ‖2 `2 ‖ Xf ‖2q ă 8,

which implies the existence of limµÑ0` F pλ` iµq.

6.2 Commutator Calculation for the Horocycle Flow

phUt q˚pSq “ atU ` btV ` ctX

for a general vector field S on M .

d

dt
phUt q˚pSq “

dat
dt
U `

dbt
dt
V `

dct
dt
X.
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Also,

phUs`tq˚pSq “ pat ˝ h
U
´sqph

U
s q˚pUq ` pbt ˝ h

U
´sqph

U
s q˚pV q ` pct ˝ h

U
´sqphsq˚pXq.

If we take the derivative with respect to s at s “ 0, we have

d

dt
phUt q˚pSq “ ´pUatqU ` pbtrU, V s ´ UbtqU ` ctprU,Xs ´ UctqX,

and thus,

dat
dt
U `

dbt
dt
V `

dct
dt
X “ ´pUatqU ` pbtrU, V s ´ UbtqU ` pctrU.Xs ´ UctqX.

We now have

d

dt
pat ˝ h

U
t q “

dat
dt
˝ hUt ` pUatq ˝ h

U
t

d

dt
pbt ˝ h

U
t q “

dbt
dt
˝ hUt ` pUbtq ˝ h

U
t

d

dt
pct ˝ h

U
t q “

dct
dt
˝ hUt ´ pUctq ˝ h

U
t

which gives

r
d

dt
pa ˝ hUt qsU ˝ h

U
t ` r

d

dt
pb ˝ hUt qsV ˝ h

U
t ` r

d

dt
pc ˝ hUt qsX ˝ hUt

“ pbt ˝ h
U
t qrU, V s ˝ h

U
t ` pct ˝ h

U
t qrU,Xs ˝ h

U
t

“ pbt ˝ h
U
t qX ˝ hUt ` pct ˝ h

U
t qU ˝ h

U
t

ùñ

d
dt
pat ˝ h

U
t q “ ct ˝ h

U
t

d
dt
pbt ˝ h

U
t q ” 0

d
dt
pct ˝ h

U
t q “ bt ˝ h

U
t
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Let ãt “ at ˝ h
U
t , b̃t “ bt ˝ h

U
t , and c̃t “ ct ˝ h

U
t .

When S “ X, the initial condition is pa0, b0, c0q “ p0, 0, 1q.

ãt “ t

b̃t “ 0

c̃t “ 1

ùñ

at “ t ˝ hU´t “ t

bt “ 0

ct “ 1 ˝ hU´t “ 1

ùñ

DhUt pXq “ tU ˝ hUt `X ˝ hUt

and

e´tU rX, etU s “ tU

6.3 Commutator Calculation for the Time-Changes of the Horocycle

Flow

From [8].

phUαt q˚pSq “ atUα ` btV ` ctX

for a general vector field S on M . If we follow the calculation in 4.2, we get

r
d

dt
pat ˝ h

Uα
t qsUα ˝ h

Uα
t ` r

d

dt
pbt ˝ h

Uα
t qsV ` r

d

dt
pct ˝ h

Uα
t qsX ˝ hUαt

66



“ pbt ˝ h
Uα
t qrUα, V s ˝ h

Uα
t ` pct ˝ h

Uα
t qrUα, Xs ˝ h

Uα
t

“ pbt ˝ h
Uα
t qpX{α `

V α

α
Uαq ˝ h

Uα
t ` pct ˝ h

Uα
t qp

Xα

α
´ 1qUα ˝ h

Uα
t

“ pbt
1

α
˝ hUαt qX ˝ hUαt ` pbt

V α

α
˝ hUαt qUα ˝ h

Uα
t ` pctp

Xα

α
´ 1q ˝ hUαt qUα ˝ h

Uα
t

ùñ

d
dt
pat ˝ h

Uα
t q “ bt

V α
α
˝ hUαt ` ctp

Xα
α
´ 1q ˝ hUαt

d
dt
pbt ˝ h

Uα
t q ” 0

d
dt
pct ˝ h

Uα
t “ bt

1
α
˝ hUαt

When S “ X, the initial condition is pa0, b0, c0q “ p0, 0, 1q.

at “
şt

0
pXα
α
´ 1q ˝ hUατ´tpxqdτ

bt “ 0

ct “ 1

ùñ

DhUαt pXq “ p

ż t

0

p
Xα

α
´ 1q ˝ hUατ pxqdτqUα ˝ h

Uα
t `X ˝ hUαt

and

e´tUαrX, etUαs “ p

ż t

0

p
Xα

α
´ 1q ˝ hUατ pxqdτqUα

6.4 Commutator Calculation for the Twisted Horocycle Flow

pφWt q˚pSq “ atW ` btV ` ctX ` dt
d

dθ
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for a general vector field S on M . Again if we follow 4.2 we obtain

r
d

dt
pat˝φ

W
t qsW ˝φWt `r

d

dt
pbt˝φ

W
t qsV ˝φ

W
t `r

d

dt
pct˝φ

W
t qsX˝φ

W
t `r

d

dt
pdt˝φ

W
t qs

d

dθ
˝φWt

“ pbt ˝ φ
W
t qrW,V s ˝ φ

W
t ` pct ˝ φ

W
t qrW,Xs ˝ φ

W
t

“ pbt ˝ φ
W
t qpX ` V α

d

dθ
q ˝ φWt ` pct ˝ φ

W
t qpU `Xα

d

dθ
q ˝ φWt

“ pbt ˝ φ
W
t qX ˝ φWt ` pbtV α ˝ φ

W
t q

d

dθ
˝ φWt ` pct ˝ φ

W
t qU ˝ φ

W
t

`pctXα ˝ φ
W
t q

d

dθ
˝ φWt ` pct ˝ φ

W
t qα

d

dθ
˝ φWt ´ pct ˝ φ

W
t qα

d

dθ
˝ φWt

“ pbt ˝ φ
W
t qX ˝ φWt ` pct ˝ φ

W
t qW ˝ φWt ` pbtV α ˝ φ

W
t ` ctpXα´ αq ˝ φ

W
t q

d

dθ
˝ φWt

ùñ

d
dt
pat ˝ φ

W
t q “ ct ˝ φ

W
t

d
dt
pbt ˝ φ

W
t q ” 0

d
dt
pct ˝ φ

W
t q “ bt ˝ φ

W
t

d
dt
pdt ˝ φ

W
t q “ btV α ˝ φ

W
t ` ctpXα´ αq ˝ φ

W
t

When S “ X, the initial condition is pa0, b0, c0, d0q “ p0, 0, 1, 0q.

at “ t

bt “ 0

ct “ 0

dt “
şt

0
pXα´ αq ˝ φWτ´t dτ

68



ùñ

e´tW rX, etW s “ p

ż t

0

1 ˝ φWτ dτqW ` p

ż t

0

pXα´ αq ˝ φWτ dτq
d

dθ

“ tW ` p

ż t

0

pXα´ αq ˝ φWτ dτq
d

dθ
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Birkhäuser, Volume 13, Basel, 1996.

[3] H. Anzai, Ergodic skew product transformations on the torus. Osaka Math. J.
Volume 3, Number 1 1951, 83-99.

[4] A. Avila, G. Forni, C. Ulcigrai, Mixing for Time-Changes of Heisenberg Nilflows.
J. Differential Geometry. Volume 89, Number 3 (2011), p 369-410.

[5] J. Brown Ergodic Theory and Topological Dynamics Academic Press, 1976

[6] I.P. Cornfeld, S. V. Fomin, and Ya. G Sinăı, Ergodic Theory. Grundlehren der
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