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Chapter 1: Introduction

1.1 Motivation

Spectral theory of dynamical systems has long been studied [16]; of particular inter-
est, is the notion of when to expect the presence of absolutely continuous spectral
measures. Since absolutely continuous spectrum implies mixing, this property can
be thought of as an indicator of how chaotic, or how far from orderly, a system is. In
the hyperbolic setting, systems are characterized as having a correlation decay that
is exponential. As a result, techniques derived from the existence of a spectral gap
as well as probabilistic tools are available for the study of spectral properties, and
therefore, it is in the hyperbolic setting where the existence of absolutely continuous
spectrum predominantly occurs. Interestingly, certain parabolic systems also share
this property despite having at most polynomial decay of correlations. This slower
decay of correlations precludes the use of the tools available in the spectral study
of hyperbolic systems, and consequently, spectral theory of smooth parabolic flows
and smooth perturbations of well known parabolic flows has been much less stud-
ied. This work is devoted to creating an abstract framework for the study of certain

spectral properties of parabolic systems. Specifically, we attempt to answer the



question: under what general conditions can we expect the existence of absolutely

continuous spectral measures?

First we will provide a bit of background on operators and spectral theory. Then
we will describe two methods that have been used in the spectral study of parabolic
systems and discuss their applications to both a simple example and a more com-
plex example. We use this as motivation to develop general conditions under which
we expect a system to have absolutely continuous measures. We use these general
conditions to derive results for spectral properties of time-changes of unipotent flows
on homogeneous spaces of semisimple groups regarding absolute continuity of the
spectrum as well as maximal spectral type; the time-changes of the horocycle flow
are special cases of this general category of flows. In addition we use the general con-
ditions to derive spectral results for twisted horocycle flows and to rederive spectral

results for skew products over translations and Furstenberg transformations [29].

1.2 Background [12], [21], [22], [30]

Let H be a Hilbert Space and let A, V' be bounded, densely defined operators acting
on H.
If for f,ge H,
(Af,9m = {f, Agn
then A is symmetric, and if

(Af,gn = =<, Agn
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then A is skew-symmetric.

The adjoint, A*, of an operator A, is defined on all g € H such that

is a continuous linear functional of f. Since Dom(A) = H, there is a unique A*g

such that

Afsgm =/, A%n

for all f e Dom(A).

A is self-adjoint if

A= A"
and A is skew-adjoint if
A=—-A".
A is essentially self-adjoint if
A= A*

and A is essentially skew-adjoint if

A=—A*

An operator V is unitary if V* = V1

The operator norm is defined as

I Allop=sup{ [| Af llc: || f [l 1}

3



The spectrum o(A) of a self-adjoint operator A, is given by the the collection of
z € C for which

A—zI
does not have a bounded inverse.

A spectral projector E is set function that maps Borel subsets of R into projec-

tions on H.

For S < R, the spectral measure is given by

uﬂ&=LXAMWAm=L3A@«ﬂaﬂﬁ.

Consider a flow, ¢; (map ¢,,), generated by a skew-adjoint operator A:

fod =e (fodn =e™f).

The Spectral Theorem gives an expression for fiy.

For t e R:
Uoﬁjm=J8%@EMD
R

=Lw%ma=mw

For n € Z:

T

Uoﬁjﬁ—f e d(EE) ], £

-7

— [ enduste) = st

—T

The Hilbert Space H has the following orthogonal decomposition:

H = Hac EI‘) pr @Hsc
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where

Hqc is the subspace of vectors f € H for which py is absolutely continuous with

respect to the Lebesgue measure m, i.e., for any S € R such that m(S) = 0,

ps(S) = 0.

H,p is the subspace of vectors f € H for which puy is discrete with respect to

Lebesgue, i.e., s is supported on at most a countable set.

Hs. is the subspace of vectors f € H for which fi is singularly continuous with
respect to Lebesgue, i.e., it is continuous but supported on a set of Lebesgue

measure 0.

The maximal spectral type 14 of the operator A is a positive measure (defined up
to equivalence) such that for every f e H, s is absolutely continuous with respect
to 4 and no measure absolutely continuous with respect to p4 but not equivalent
to 4 has the same property. If us = m, the Lebesgue measure, then the maximal
spectral type is said to be Lebesgue.

The main question we investigate is:

Under which conditions do we expect the existence of a subspace of H on
which the associated spectral measures are absolutely continuous with respect

to the Lebesgue measure?

Additionally, in our results for time-changes of unipotent flows, we determine that
the maximal spectral type is Lebesgue following the method in [8]. In the applica-

tions to maps, the maximal spectral type is implied by the purity law in [14].



1.3 Methods Used in the Parabolic Setting

The following two methods can be applied to certain parabolic systems to show the
existence of absolutely continuous measures. We provide brief descriptions of the

methods followed by examples of their applications.

1.3.1 Method 1. Limiting Estimates for the Resolvent

On the level of the generator, spectral properties can be derived from limiting prop-

erties involving the resolvent,
R(z) = (A—zD)!

for A self-adjoint, z = XA +iu, A € 0(A). Since, | R(2) ||= |u|™', R(z) does not have
a bounded limit as u — +0. If, however, there exists a dense subset of vectors in H
for which the lim F'(A +ip) = (f, R(A +ip) f) exists as p — +0, then we can obtain

results on the spectral properties of H.

Theorem 1. [2/ If S < R is an open set and |(f,IZmR(z)f)| < C(f) < o0 for all

A€ S and > 0, then f is A-absolutely continuous on S.

1.3.2 Method 2. Regularity of the Spectral Measure

Another method useful in answering the first question is by directly showing that
fir(t) € L*(R) (or fig(n) € ¢*(Z) in the discrete case) as this implies that py is
absolutely continuous with respect to the Lebesgue measure in the following way
(we include the proof for the continuous case):
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Suppose jiy € L*(R). Let a set S € R be such that m(S) = 0 for m the Lebesgue
measure. Let yg be the indicator function of S. Since g can be approximated by

smooth functions with compact support, the following is well-defined:

1s(8) = f ys(t) du ().

Xs can be expressed as the inverse Fourier Transform of yg,
nr(8) = | xst@) dus(t) = | (| xls) - eas) st
R R JR

= [ s e dustsn an = [ s stoy

and from Holder’s Inequality,
[ (S <l Xs (@) lr2wy - [ 14 (@) z2@y< AV/m(S) - || (@) || 22)= 0.

To show that the assumption fi; € L? holds, one can show that the growth of

[{f o ¢, fHrul = O(3%) for B > 5. Polynomial decay of correlations of general
smooth functions does not guarantee a fast enough rate to achieve this bound, even

in the simplest examples.

Note that both methods rely on a particular choice of subspace of H. If the methods
are applicable on a dense subspace of ‘H then the spectrum of A is purely absolutely

continuous since H,. is closed.



1.4 A Simple Case - The Horocycle Flow

For a simple example, we begin with the classical horocycle flow. The horocycle
flow on compact, hyperbolic surfaces, is minimal [13], uniquely ergodic [10], strongly

mixing [24], and has zero entropy [11].

On M =T\PSL(2,R), where M is either compact or of finite area, we consider the

basis

D=

@]
@]
—_
]
@]
|
D=

of the Lie algebra sly(R), where U and V are the generators of the positive and
negative horocycle flows, {hV} and {h}} respectively, and X is the generator of the
geodesic flow, {¢X}. Tt follows from [1] that Uand V are essentially skew-adjoint.

Our Hilbert Space is L?(M, vol) for vol the hY-invariant volume form.

The key to the simplicity of this example lies in the commutation relations:

[XvU] :

and

e WX, eV = (§,10hY(z)dr) U = (See 6.2 for the calculation.)



1.4.1 Method 1. Applied to the Horocycle Flow

For cases involving such a simple commutator, it is possible to prove that lim,,_, ;¢ F'(A+

ip) exists by showing that

1
L |%F()\ +ip)|dp < oo.
This is achieved by expressing a bound for %F (A +ip) in terms of F'(A + iu). In
many situations this requires considering a new function F(\ + iy + i€) and then
applying the Gronwall Inequality. However, in the case of the horocycle flow, the
simplicity of the commutator enables us to calculate the estimate directly. In the
following calculations we will use the operator iU as it is essentially self-adjoint. We
include more details in 6.1; what follows are the main steps. This proof is motivated

by an overview of conjugate operator methods in [2] (Chapter 7).

Let A€ 0(iU) and z = A + ip for > 0. The resolvent of iU is given by,
R(z) = (iU — 2)~*.

We will use the following important identities,

and since [X,iU] = iU,

z—R(z) = [R(2), X] — R(2). (1.1)



For f € Dom(X),

d

“dz

F(z) = =F(z) = (R(2)f, X [) + (X[, R(Z) ).

Let || - [|=] - [|z2(amvor). Given our choice of z, the following equality holds,
| RS =l RE)S ll=p% - [ImF(2)]=.

Using the above bound, we have the following inequality,

d 1 1
@F(AHM)I <IATHLA I +2 0 Xf a2 FO+ i)z, (1.2)

We divide both sides by |F(X + ip)|2, and since |[F(A + ip)[2 = [F(\ + ip)2|, we

obtain, after integrating with respect to p for 0 < p < 1,
NS N _
[FO+ i)z < [FO+ i)z + 27 f I +2 1 X )

We use this to bound the right hand side of (1.2). Since A is bounded away from 0,

there exists a constant M such that,

%F(A i) < %(II PP 2l Xf P,

The above inequality enables us to show the following is finite,
bod ' M
—F(A+ip du<f— FI?P+2) Xf1?) du
fo ‘du ( )| ) \/ﬁ(H 1721 X717
=2M (|| fIP +2| X[ ") < o0,

which implies the existence of lim, o+ F'(X + ip).
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1.4.2 Method 2. Applied to the Horocycle Flow
For this method we show that
(fo h?, f>L2(M,wl) € LQ(K dt).
Because the geodesic flow is volume preserving,
(fo htUa f>L2(M,vol) ={fo htU © ¢§7 fo ¢§(>L2(M,vol)-
We integrate both sides from 0 to o with respect to s,
oW Dz = 5 [ oM 065, 0 6 st

and then integrate by parts,

fooyf Xfooy

Jfoh?wfds fohl oy
0

1 (°
; J <f © hij © ¢5X7 f © ¢5X>L2(M,vol)d5
0

1 o 1 (° S
= | pontooXds, fo 6~ | (| £ohY 00X ds X T areads.
0 0 0

g

The only term that is not clearly bounded is
|| rontootas
0

We consider functions of the form

11



for g € L*(M,vol). Also, we use that

d
(gohf 0¢¥) = tUgohl o 6¥ + Xgohll o oY,
S

and thus,

d
tUgOh?Oaﬁf:E(goh?Od)f)—Xgohfoaﬁf-

So,

o (o} 1 (e
ffohgogbfds:JUgohfogbfd(s:;f tUg o hY o ¢Xds
0 0 0

1 (7 d

1 g
1| Seentoodyis— 1 | Xgont o utas

and hence,

e 1
| J fohi odXds |2 < . (Il 9 le2carwory + 1| X [l 22(0t,000))-
0

This shows that

1
| < foh?('r)af >L2(M,vol) ’ = O(;)

It is an important observation that

|| Fontootas
0

is approximately (for small o and large t) an ergodic average for the horocycle flow,
ie.,

limf fohfogbfds:f f dp.
0 M

t—o0

12



This geometric property was initially used by Marcus in his proof of mixing of the
horocycle flow [18]; above we have a quantitative version along coboundaries. This
technique was a key tool in [8] to prove spectral results for the time-changes of
the horocycle flow. The following figure, Figure 1., from [17] illustrates that the
image of a small geodesic segment ~;, under the horocycle flow hY () for large ¢,

is approximately a horocycle segment, 7.

hi' (1)
XY (1)) he (3 (1)) 62 (1)
_‘\_\\.—_ - :/_,-—:;l’—f
hi () . B () y

Figure 1.
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1.4.3 Relationship with the Geodesic Flow

In fact, the commutator relations are so nice that the spectral properties can be
derived from a direct analysis of these relations. The commutation relation between

the geodesic and horocycle flows can be written as
¢3 o hi 0 ¢X, = hig..

It also has the following geometric interpretation.

By (62 () é3 (v)
. —
f,-"
. . - . T ff
o (B (@ () = By () ¥
Figure Z.

If you travel along a geodesic for a given time s, and then you travel along a horo-
cycle for time t before traveling back along a geodesic for time —s, it is the same as
having traveled along a horocycle arc for a rescaled time, te*. This shows that eV is
unitarily equivalent to the renormalized one-parameter group e’Y. Consequently,
the generators U and e®U are also unitarily equivalent, and thus, spectrally isomor-
phic. Since this means that the spectral measure is invariant under multiplication
by e®, the spectrum must be Lebesgue [12] (p 664).

14



1.5 Time-Changes of the Horocycle Flow (Compact Case)

Even a small perturbation can disturb the simplicity of these relations, and thus,
create obstacles in the study of spectral properties. We will use the example of
adding a time-change to the horocycle flow to briefly describe the methods used
in [28], [29], [8] to show that the spectrum remains absolutely continuous under
this reparametrization when M is compact. Through these methods we will try
to understand, on the level of the generators, to what extent we can increase the
complexity in the commutation relations and still maintain absolute continuity of

the spectrum.

Let 7: M x R — R such that

Tz, t + 1) = 7(x,t) + 7(hWY (2),1).

Let a: M — R*, be the infinitesimal generator of 7, such that o € C*(M) and

J avol =J vol, =1
M M

where vol is the hY-invariant volume form and wvol, is the hl°-invariant volume

form.

Now we consider a time-change on the positive horocycle flow, {htU >}, generated by
Uy, =:UJa.

The commutation relations are now as follows,

[X,0.] =| (22 1)U = Gla)U,

15



and

e~tUa[ X, etla] — (f(@ — 1) o WY (2) dr)Us | = Gla, ).

0 «

The fact that applying the aforementioned spectral methods is not so straightforward

reflects these more complicated relations.

1.5.1 Method 1. Applied to the Time-Changes of the Horocycle Flow

(Compact Case) [28], [29]

The more basic techniques for proving the existence of such limits require a simple
expression for the commutator [X,iU,] as seen in 1.4.1; for example, in this case
we cannot verify the identity in equation (1.1) and thus, cannot proceed with the
calculations as before. To extend these methods to more general and complicated
cases, Mourre [20] derived the operator (we describe his estimate in the time-change
setting)

E(S)[X,iU,)E(S)

for S a Borel set in R, f € L3(M,vol,) (zero average functions in L?(M,vol,)), and
iy the spectral measure associated to U, as described in 1.2. For each bounded

Borel set S € R, E(S)[X,iU,]E(S) is bounded and self-adjoint.

Definition 1. If there exists a number a > 0 such that

E(S)[X, iUa]ps ()

WV

aE(S)

16



then the "Mourre estimate” is satisfied.
The importance of this estimate for us lies in the following theorem:

Theorem 2. [29] Let U, and X be skew-adjoint operators in a Hilbert space H.
Suppose that U, is of class C*(X) (i.e. e X Uye™™ is of class C*(X)) and satisfies a
Mourre Estimate on a bounded Borel set S < R. Then U, has no singular spectrum
n S.

The idea is to show that [ X, iU, ] has a definite sign when localized in a neighborhood
of A\, for A € o(iU,). Showing this positivity condition in the time-change case does
not follow immediately from the natural commutator [X,iU,|. Instead the author

in [28] relies on the following,

and

[iH? Hy) = H?g + 2HgH + gH?
for g = —3G(a).
[1H?, Hy] satisfies the Mourre Estimate under the added assumption that g > 0,
equivalent to the Kushnirenko Condition [15]. Since the spectral properties of H

can be derived from those of H?, and since H is spectrally equivalent to U,, the

author concludes that U, has purely absolutely continuous spectrum except on C*.

17



In a subsequent paper [29], the author modifies the commutator differently and
replaces the Kushnirenko Condition by exploiting the unique ergodicity present in

the compact case.

1 (. .
AL _ z J ethH2efth dt
0

1 L
QLZ_J g o hi*(x) dt
L 0

Using unique ergodicity, the author shows that
L—o0

_ 1
lim g;, = 3

and thus, for large L,

gL>O.

He then proves the Mourre Estimate for [H?, Az] on S € (0,00) with
a := 2inf(S5) gg?]&g];(x)

Again, since the spectral properties of H can be derived from those of H?, and since
H is spectrally equivalent to U,, the author concludes that U, has purely absolutely

continuous spectrum except on C*.

18



1.5.2  Method 2. Applied to the Time-Changes of the Horocycle Flow

(Compact Case) [§]

As mentioned previously, a direct approach to proving absolute continuity of the
spectral measure involves deriving square mean bounds on the Fourier transform
of the measure and requires that the decay of correlations of a general smooth
function under the flow be square-integrable (this is not even satisfied in the classical
horocycle case [25]). In the time-change case, this condition is not satisfied either;
to circumvent this problem, the authors in [8] derive square integrable decay of

correlations for smooth coboundaries.

Definition 2. A function f on M is called a coboundary for the flow {hV~} if there

exists a function g on M, called a transfer fuction, such that U,g = f.

In contrast to the horocycle case, it is much more difficult to bound

| Fonteootas
0

If we try to continue as in 1.4.2,
(o2 g 1 g
f fohVoptds = f Uag o b 0 ¢Xds = ?J tU,g o hY* o ¢Xds,
0 0 0

but tU, is not equivalent to the commutator e V=X eV« ].

Instead the authors introduce the commutator in the following way,

7 G(a,t G(a,t
f (Ua——(?’ )Ua—k—(oté’ )Ua)gohgaogbfds
0

B JU(UQ B G(a,t) U)g o h?‘* i gbfds . JU G(a,t)

0 t 0

Uag o hi™ o ¢ ds.

19



Bounds for the second integral follow from 1.4.2, however, bounding the first integral
is difficult. The required bounds are ultimately achieved by deriving bounds on
integrals along the push-forward of geodesic arcs - the technique described at the
end of 1.4.2, followed by a bootstrap of the estimates. The authors also rely on the

unique ergodicity of the flow in the compact setting as the uniform convergence of

t—0o0 t

is very important. The reason for this becomes apparent in the following section.

In an effort to find general conditions applicable to parabolic flows, we take from
Method 1. the idea of imposing conditions on the level of the generators and thus
eliminate any reliance on geometric behavior and interactions. We express these
conditions in terms of restrictions on the growth with respect to t of the relevant
commutators in order to achieve the estimate in Method 2. To do this, we mimic
the proof from [8] using general operators in order to identify exactly which terms
must be controlled. An advantage to this method is that it provides a segue to

determining maximal spectral type.

20



Chapter 2: General Results

2.1 Conditions

Let U be a skew-adjoint operator in a Hilbert space H with norm || - ||3;. We define

the spectral measure, p1f by its Fourier Transform,

mm=@%fm:L%wM>

for feH.
In the discrete case we have

™

mm%%wWJM=J e djy(€)

We find conditions under which py is absolutely continuous with respect to the

Lebesgue measure.

Preliminary Assumptions

Suppose that for some operator X on H, on a subspace D < Dom/(X) dense in H,

eV (D) < D, and the commutator
H(t) = e VX, Y]

is defined on D.
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For u e D, let

H
HEt)  w o
th t—0o0

Suppose also that {e*X} is a group of bounded operators for which

sup || e*¥ |

s€[0,0]

op< +00

. sX _
and lim, o “— I — X onD.

For By, Bs bounded operators on H such that

By : D — D, let
1 g
H < eth, f >y HLz(]R) < H ;J < €SX€th, BleSXBgf >y ds ||L2(]R) .
0
Note: In the discrete case, instead of the continuous parameter t and norm || - || 2w
we use the discrete parameter n and norm || - || 2.

Theorem 3. If for g > %, H(t) and H satisfy:

(1) %H‘l : D — D, is defined on Ran(H), extends to a bounded operator with

uniformly bounded || - ||o, norm in t, and satisfies on Ran(H),
H(t)H™!
limsup || I — HOHT lop<'1
t—o0 tﬂ

(1) [X, %H‘l] is defined on Ran(H) and extends to a bounded operator with

uniformly bounded || - ||o, norm in t

(iii) [H(t), H|{H™! is defined on Ran(H) and extends to a bounded operator with

uniformly bounded || - ||op norm in t

then for f € Ran(H) n D, py is absolutely continuous.
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Furthermore, if
(iv) Ran(H) n D = H,
then the spectrum of H is purely absolutely continuous.

Remark: It is never true in ergodic theory that Ran(H) n D = H. However, in
many cases, Ran(H) n D = F for F a subspace of H; for example, F = L3(M)
the space of zero-average functions in H = L?*(M). While this doesn’t give a result
for purely absolutely continuous spectrum it implies the existence of an absolutely

continuous component.

Proof. Let f € Ran(H) n D.
~ L s s
” ,LLf(t) ||L2(R):|| < Gth,f >y ||L2(R) < || gf < e Xeth, B1€ XBQf >y dS||L2(R) .
0

For s € [0, 0], we integrate by parts:

d
B1€SXBQf E(BUSSXBQJC) = B1€Sng(BQf)

o
esXeth J €SX€thdS.
0

1 g
—J < e XelVf Bie*XBof >3 ds
o Jo

1 g
=—-< j e XelV fds, B1e"* By f >y
o

1 o S
——f < J e XelV fds, Bie** Lx(Baf) >y dS
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From our assumptions, both Bie*XByf and BleSX.XX(BQ f) are bounded in H.

Thus, in order to show that () = O(35), we need a bound (in ¢) for

(oa
I | et sas
0

Suppose that conditions (7), (i7), and (éi7) hold, and let f be a coboundary of the
form f = Hg,

for g € Dom(H) n D.

7 7 7 H(t 7 H(t
f e XelV fds = f X Hgds = J e XeV(H — —tg ))gds +J eSXetU—t( )gds
0 0 0

I. Let

(H may not be invertible in #, however it is on coboundaries of the form f = Hg.)

It follows from the assumption limsup || I — H(tzf - lop<< 1, that for large ¢,

t—00

| [:[(s,t) |lu< C1 < 1.
Now we can rewrite

7 H(t 7 H(t)H™! 7
J e XeV(H — %)gds = J e XetV (I - %)Hgds = J H(s,t)e* eV fds,
0 0 0

and integration by parts gives

o o o AT S
J H(s,t)e*XetV fds = H(o,t) J eXelV fds — f M[J e*Xe'V fds)dsS.
0 0 o 05 0
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So we must bound %:

aH(gj t) _ a—i[tlﬁeSXetUH(t)HletUeSX]

1
_ t_ﬁ[esXXetUH@)HfleftUest _ esXetUH<t)H71€7tUXest]

sX

Since e*X and e~*X are bounded, we can factor e** from the left and e=*X from the

right and now consider bounding the term

1 tU -1 _—tU
(X V() H )

1
= t—ﬁ([X, VMHMH eV + Y [X, Ht)H eV + Y H()H X, e Y]
Using the identity e V[ X, e!V] = —[X, e""V]e¥ we can simplify and combine terms:

LoV @2+ [X, HO)HY] - HEHH (1)

H(t)H*l] B
8 8

= (X,

Conditions (7), (ii), and (4i7) imply

OH (s,t)

H{t)
= —5

B

_ _ H(t)
" oy | ). Yy + 1 16 2 ) <

lop< C(

for some constants C' and C5.
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II.  For ge Dom(H)n D,

1
tﬁ

1 d
1 (7, Cs
| t_ﬁj XV H()gds lus 22 | Xg lln + gl
0

Finally, from I. and II.,

S

sup || esxethds %
s€(0,0] 0
< sup (I AGsut) oy | [ e s o)
s€[0,0]
8ﬁ s,t s s Cs || Xg |lu +Ca |l g
+o- S[l(l)p](” ( ) ||op . || f e XethdS ”7-{,) + || ” tﬁ 4 || ”H
se|0,0 0

So for o > 0, chosen such that 0 < C + 0C5 < 1, for all ¢ sufficiently large,

Cs || Xg |l +Ca || g |ln 1 1
su sX tU dS 3 _ O .
se[OIc)r] H 0 f H B (1 — Oy — 002) (tﬁ)

Thus, since fif(t) € L*(R), uy is absolutely continuous for f € Ran(H) n D. Fur-
thermore, if Ran(H) n D is dense, then uy is absolutely continuous for a dense
subspace of functions in H, and thus, the spectrum of U is purely absolutely con-

tinuous.

Note: In the discrete case, the conclusion is that
| < e f, f>u le@=0(=)

for 8> 3, and thus, jr(n) € (*(Z).
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Chapter 3: Applications to Flows

3.1 Time-Changes of Unipotent Flows on Homogeneous Spaces of

Semisimple Groups

As a direct consequence of Theorem 1, we derive a result for a specific category of
generating operators.
Let G be a semisimple Lie group and let the manifold M = I'\G for some lattice I'

in GG such that M has finite area.

By the Jacobson-Morozov Theorem, any nilpotent element U of the semisimple Lie
algebra of GG is contained in a subalgebra isomorphic to sly. This means that this
subalgebra contains an element X, such that [U, X] = U. Let ¢V be a unitary
operator of the Hilbert space L?*(M,vol). Thus, if the unipotent flow generated by
U, fool =eVf, fe L*(M,vol), is ergodic, then from Lemma 5.1 in [19], it has

purely absolutely continuous spectrum on

Li(M,vol) = {f € L*(M) |fov0l = 0}.
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Let 7: M x R — R such that
T(z,t + 1) = 7(x,t) + 7(¢7 (2),1).

Let o : M — R™, be the infinitesimal generator of 7, such that o € C*(M) and

J avol =J vol, =1
M M

where vol is the ¢V-invariant volume form and wol, is the ¢!*-invariant volume

form. Now we consider a time-changed flow, {¢7*}, generated by

U, =UJa.

Let etV be a unitary operator on the Hilbert space L?(M, vol,), and let D =

" (M).
X.U.] = Gla)U, = (22 _1yu, =

«

e e X, V] = G(a, 1)U, = (J (& — 1) o ¢¥(2)dr)U, = H(2).

0 (0%

The ergodicity of ¢;* gives us the following pointwise limit,

lim ———= = lim — Jt(ﬁ — 1) o ¢V (x)dr

0 «

tool Jo 0
1 (" Xa 4
= }1}(}0(2 o o ¢z (x)dr — 1)
X
= 2a dvol, — 1 = —1
M«
and thus, for v e C*(M),
Gla,t
lim (o )Uau zl—Uau = Hu.
t—0o0 t




Lastly,

f eVo f . f dvol, = f eV f . af dvol
M

M

—_— 1
= f esXelVo f . esXaf dvol = J eXelVaf . —esXaf dvol,.
M M o

So if we integrate both sides of

1
tUq _ sX tUq s X
<e€ f7 f ZL2(Myoly) =< €7 € fa ae Ckf > L2(M,voly)

with respect to s, we obtain the following equality

s

1 1
| < e f, f >reueo) l2@an = | ;f < eXel f, 565X04f > 12 (Myvola) 45 || L2 at) -
0

Thus, the preliminary assumptions are satisfied with By = é] and By = al.

Theorem 4. a. Any smooth time-change of an ergodic flow on M generated by a
non-central nilpotent element of a semisimple Lie algebra has absolutely continuous

spectrum on L3(M,voly) if || 22 [|o< 1.

b. Any smooth time-change of a uniquely ergodic flow on M generated by a non-
central nilpotent element of a semisimple Lie algebra has absolutely continuous spec-

trum on L3(M,vol,).

Proof. (a)
(1) Let f = U,g for g e C*(M).

H(t)

B G(a,t)
| TH ' llz2votay =l

t

U01<_U071f> ||L2(M,vola)

G(a,t)
t

Fflle2tw0a) < 2 1 G(@) oo - || f 22 0010) < 2 || f |20 0000)
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Since the above holds for f € Ran(U,), @H ~! extends to a bounded operator on

Ran(U,) = L3(M,vol,) with uniformly bounded norm in ¢,

H(t)

I H |gp< 2.

Also,
1= T 1 g =l @+ EED) st
10+ [ 2 =10 4@ ey
1 [ 220 @ o<1 G [ 22008 e 1 F ot

Xa
<l o oo+ | f Il z2atwota) I f 112200000 -

Since the above holds on Ran(U,) the following is true on Ran(U,) = L3(M,vol,),

H(t) G(a,t)

t

limsup || I — I'op< 1.

t—0o0

H™'I ||,p=limsup || I +
t—00

(7) In the following calculation we use that
DhY*(X) = G(a, t)U, o hY* + X o h=.
(Please see 6.3 for this computation.)

X = X [ G - nean - ¢ [ G- Do diinx

1 t X 1 t X
=3 L (D7 (X) o ¢E’i)(7a) o gyodr = ~ L (G(a, t)U, + X)(Ta) o ¢Vadr

I X 1 X
-1 | oG e @i + 1 | XE) oo (@)ar

0

30



We integrate

1t d Xa
2| Gl G o ot wyir
by parts,
1 d X
L] clan Gl @ar
Gl Koy o Lf\Xa | Xa
- ST o - [ CE-DED) 0 @ar

A DXy 3 [ nE o g @ar I
w1 [ %) t@yr
<2022 1 12 e+ 1 XCE)
<2(2) + C,

where C,, depends on the second derivative of a.

Since

is the multiplication operator given by

(7 | Glatty+ X)) o dtean) - 1,
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we obtain the following bound,

H(t) 1t Xa
105 Nt <1 1 [ (Gt 0200 dr e 15 ot
< (4 + Oa)' || f HLZ(M,vola) .
Thus, [ X, @H ~!] extends to a bounded operator on Ran(U,) with operator norm

uniformly bounded in ¢:

Hit
1 20,0,

(ii)
I [H @), HHH f [|z2(0a0010) =] [G(e, ) U, =Ua] (U3 f) 2201 0010) X

<2 G(a) loo - || £ l2arwo1a) < 2(2)- || f Nl 220 0010)

LX bd X
e e Y P | eV E ) N e

0 0 AT’ @

<[ G(@) o ¢/ = G(@) lloo - [ ] [ 22(as0010)
<2 G(@) [loo - I £ llz2swota) < 2(2)- || f l22(a,0000)
The above holds on coboundaries of the form f = U,g, so on Ran(U,) = L(M,vol,),
I L (8), HJH ™ [|op< 4.

Since conditions (i) — (¢i¢) of Theorem 3. are satisfied on Ran(U,), the time-changed

flow, {¢;*}, has purely absolutely continuous spectrum on Ran(U,) = LE(M,vol,).

This concludes the proof of part a.
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b. Now we assume that the flow {¢V}, and hence {¢,*}, are uniquely ergodic.

G(a,t)

H(t)
H ([— LH 1)f HLQ(M,vola):H (1 + n

t

)f ”LZ(M,vola)
1 ("X
S+ G [ 8= 126 @O

1 (" Xa 1 (" Xa
=G| = 0 7 (2)d7) f || 2ot <I| (5 | == 007 (@)d7) oo - | £ | 2(0s,00l) -
0 « tJy «

If {¢;/~} is uniquely ergodic, then the following converges uniformly,

1 ("X X
lim - 2%, ngU“dT = 2 dvol, = 0,
t-w t J, « M
and thus,
H(t 1 ("X
timsup || 7+ 2D g1 < timsup || (5 [ 22 0 6% ()dr) |1
t—o0 t t—00 t 0 «
X
_ J 2 ol || 0.
Mo
Hence,
H(t
limsup || I + LH’1 lop<'1
t—o0 t

is satisfied on Ran(U,) = Li(M,vol,) without imposing any further conditions on
%. The remainder of the proof is the same as in a except that

Xa
| — llo=M
«

where M is finite but not necessary equal to 1.
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Theorem 5 (Maximal Spectral Type). The mazimal spectral type of the unigely

ergodic flow {¢; >} is Lebesque on the subspace Ran(U,).

Proof. We follow the method in [8].

Lemma 1. /8] Suppose that the mazimal spectral type of {¢”*} is not Lebesgue.
Then there exists a smooth non-zero function w € L*(R,dt) such that for all functions

g€ C*(M) the following holds:

J w(t)f eXelVU,gdsdt =0
R 0

Proof. Since the maximal spectral type is not Lebesgue, then there exists a compact
set A c R such that A has positive Lebesgue measure but measure 0 with respect
to the maximal spectral type. So we let w € L?*(R) be the complex conjugate
of the Fourier transform of the characteristic function ya of the set A < R. For
f,h € RanU,, let us;, denote the joint spectral measure (which we know is absolutely

continuous with respect to Lebesgue since f,h € RanU,. Thus,

f W(t) < Vo f, > paagn dE = j al)dign(€) = 0.
R R

In particular, when f = U,g we have

J f w(t) < eXeVU,g, h >r2(Mpuoy At ds =0
0o Jr

=< J w(t)f eSXetU“Uag ds dt,h >p2(np01= 0.
R

0
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Recall that satisfying conditions (i) and (i) and (éi7) in Theorem 3. results in the

bound

7 s Cola)
. I ¥ Uagds [l12@an< w5 maxtl g [lzzqan, | Xg lz2n, | Uag [l2n)
se|0,0 0

where § = 1 and C,(«) is a constant that depends on the time-change function «

and parameter o > 0.

Because

f X eV, g ds
0

is bounded on M, it follows that

vanishes.

Lemma 2. [8] For we L*(R,dt), for some x € M, and for all g € C*(M),

f w(t)J e*XeVU,gdsdt = 0.
R 0

Thus, w vanishes identically.

Proof. Fix x € M and 0 > 0. For any T > 0, p > 0, and 5 > > 0, let E' _ be the

flow-box for the the flow {¢} defined as follows:

EpT,cr = (¢ta © ng( © (;5;/)(1‘), for all (T737t) € (_'7,’7) X (_P, P) X (_07 0)'

For any x € C°(—1,1) and any ¢ € C° (=T, T), let
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r S

Q(T’,S,t) = X(p)X(—W(t)-

g

Let g € C*(M) such that g = 0 on M\Im(ET,) and

. 0 on M\Im(E? )
gokb,, =

g(r,s,t) on Im(EZg)
Let T, , > 0 be defined as:

Tpo v=min{[t] > T Usel-0,0)(0) © 07 ) () N Im(E,,) # 0}

From unique ergodicity,

l'l'mp*,0+ Tpvg = +00.

The composition of the flow box with U,g and Xg follow from the commutation

relations:
T . /T s, di(t)
(Uag) o E,, = X(;)X(;)T(t)
and
(Xg) o E,,
- OTEEN0 - ([ C2 - Doo oo 0 el @i NG G 0. ()

From the assumptions of Lemma 1 and by integrating (3.1), we have

O ([ ([ wi

0 =T

Q| ®
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+ f w(t) f eXeV (U,g) ds dt = 0. (3.2)
R\[=Tp,0,Tp,0]

0

The bound C,(«) of

f e X eVl gds
0

derived for the spectral results, combined with (3.1) and (3.2), give us the following

L? bound,

7 Co(a)
[ eettragas oo S mastl g o | Xg e O 1)
0

Co(a)

N

max{1, T} x max*{|| x ||z=®), || X |lze®): | ¥ [|ze@ys | ¥ o)}

Since the above bound is uniform with respect to p, we can conclude that the

following limit holds,

lim w(t)J eXelV (U,g)dsdt = 0. (3.3)

P20 IR\~ T} 0, T, 0] 0

Combining equation (3.2) with the limit result in (3.3) implies that

and thus, w = 0. O
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3.2 Time Changes of the Horocycle Flow - Compact and Finite Area

From the description in 1.5, it follows that time-changes of the horocycle flow are
special cases of Theorem 4, and thus, Theorem 5. When M is of finite volume,
{h{*} is ergodic, and when M is compact, {h{*} is uniquely ergodic. We state the

spectral results in the following Corollary.

Corollary 1. a. Any smooth time-change {h¥*} of the horocycle flow on M (finite
volume) has absolutely continuous spectrum on L3(M,voly) if || 2 |jx< 1.

b. Any smooth time-change {h*} of the horocycle flow on M (compact) has

Lebesgue spectrum on L3(M,vol,).
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3.3 Twisted Horocycle Flows

We would like to examine the conditions under which the spectral properties persist
or do not persist after we combine the horocycle time-change with a circle rotation.
Our new space is M = (I\PSL(2,R)) x S* for T' a cocompact lattice. We define

the following operators:

X = (X,0) where X is the generator of the geodesic flow.

V= (V,0) where V is the generator of the negative horocycle flow.

_(n d d - 1
= (0, 45) where 4 is a rotation on S*.

sl

W = (U,0) + (0, a-L) where U is the generator of the positive horocycle flow and

a = az), x € [\PSL(2,R), is the time change function as in 1.5.

Proposition 1. The flow {¢}"} is uniquely ergodic.

Proof. Consider the time-change {¢;"*} = 2W = U, x d%. Since {hY*} is mixing [17],
then it is weakly mixing, and thus {¢;" >} is ergodic [5]. This implies the ergodicity
of {¢/V}. Since {¢V} is ergodic and {hl} is uniquely ergodic [10], then from [9]

(applied to flows), {¢}"} is uniquely ergodic. O

We are interested in the spectrum of the flow {¢}"}, so we compute the commutation

relations with X , (for details of the calculation, please see 6.4).

eV M) = 1 4 ( f (X 1) 00l (@) dr) S = H (1)

For u e C*(M),
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lim@uz (W—i)u:Hu

t—0 t

Since,

1 (7, & .
I <™ Ne@an = |l ;J (X f, et ) ds || 2wy,
0
the preliminary assumptions are satisfied with By = B, = [ and D = COO(M ).
However, when we proceed with verifying the conditions for the functions in the

range of H, we are unable to extend pointwise bounds in L? to uniform bounds in

the operator norm. For example,

d 1 (" Xa w -1
— 1+ G+ (G | G =Dt @ an g
—<H+<§ o dl @) an)pH
[ Xy any

Since 4 commutes with everything, we can restrict to the subspace

do

~

E, =

u = inu}

{de

since it is invariant under all of the operators.

FOI'f: Hga f7g€COO<M)7

1(tX
| (I +(5 | == 06l (@) dr)inH g |l 20

0o «
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1 (* Xa R
S+ (| 2o @) dninT g g

1 (" Xa .
=l g+ (; o o o) (x) dr)inf 22y

1 (* Xa .
<l g llp2m + | (; o C oy (x) dryinf || 2
<l 9l 2y + nCa | f 1 p2ar)

since in the compact setting

A

Xa
(6%

Because we have an L? bound in terms of both || g Ir2iny and [| f {2 =
Hg || 23y, We are unable to extend this to a bound in the operator norm.

Instead we modify our operators by introducing an operator P, defined in such a
way that it not only acts as a projection operator but also preserves regularity.

Let x € C°(R\{0}) such that the support of x is compact subset of the spectrum of

H away from 0. For f,ge L*(M),

PF8usgn = | x@)ngyo
- | OO de = [ SO0

since H is a vector field, and thus,

Pf= JRX(t)etHf dt.
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The decay of e f = f o ¢H is at most polynomial in ¢, however, since x € CL (M),
X € S(R), and thus, must decay faster than any power of % In this way, we guarantee

that

P:C* — C*".

Now we introduce our modified operators.
X, = PXP
eWI[Xp, eV = PeW[X, WP =PH(t)P = Hp(t)

For u e C*(M),

Hp(t
lim Au — PHPu = HP?u = Hpu.
—00

Note that now Hp is a bounded, invertible operator. Let

Crp =l Hp ||op
Crrp, =l Hp' llop
C}g’ :H p* ||op
Cg :H HP ||op
and
Co =l a [l -

Theorem 6. The flow {¢}} has absolutely continuous spectrum on Ran(H).
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Proof. We will verify the conditions of Theorem 3. on each subspace

~

E, = {—u = inu}.

{dQ

B —w e [ E2 =06 @ dnin

(0%
t

1 ("X 1
=H+in+ (—J <9 o oW (z) dr)in + (—J —~10¢¥(z) dr)in
tJy o t Jo
1 ("X
:H+m+(—f—o‘o¢?(a:)d¢)m—m
tJy «
1 ("X L
=H+(—f—aogbzv(x)d7')in=H+ﬂm
tJy « t
Let f = Hy,g

(1)
t

H,(t)
| p—g ||L2(M)

. L(t L(t
1 Hyg + inP 2Py iy <l Hg sy + 1 inP 2 Py

H, ' f i =]

/\

Xo
< Clty || 9 2y +7(Cr)* I — lloell 9 12y
= (Crp +n(CP)*Ca) |l g Il 2y

So,

H,(t
D < (i),

Also,

(1)
ot

L(t)

(I = Hy O i =l (I =T = inP—

PP < @02 12D £

P)f HL2(M)

Since {¢;"} is uniquely ergodic, the following converges uniformly,



So,

H.(t L(t

limsup || I — it )Hp_l lop< limsup n(Cp)? || L)

t—00 13 t—0o0 t
and hence,
H,(t
limsup || I — pl >H*1 l|lop< 1.
t—00 t P
(i)
- H,(t
(e, 0 1)1

||OO: 07

Hit t Hit
= P[X, P]P—t( )PH;1 + P*[X, P] ( )PH,;l + PX, —t( )]PH,;l
a b c
H(t) o Ht) o
+P3—t()[X,P]H;1 p? ()P[X,H—l]
7; VT

[X,P]f = | X()[X,e"]fdt

R

_ f )Z(t)etwe_tw [X) etH+tin—tin]f dt
R

_ f X<t)6tW€—tW[X’ etW]e—itnf dt
R

J X e™  H(t)e ™™ f dt

R

= f x(®)etwe dt+J
R

R

JR )Z(t)eit”t%(etwf) dt + J

R

X()e™ (L(t) — t)e ™™ f dt

The first term we integrate by parts:

R(t)e X (H)e ™t + x(t)e ™ —iny(t)e "t
d
eth a (eth>

()™ (L(t) — t)e ™™ f dLt.



—0
+ J (X (e ™t + Y (t)e ™ —ing(t)e )™ f dt
0 R
= J (X (H)e™ ™t + x(t)e ™ —inx(t)e )™ f dt
R
So,

| R()% (et + x(t)e™" — inx(t)e™ " t)e™ f dt || 2,

<( f K ()] de + f ()] dt + f %) dt) 1| £ llpain< Co L f e

The boundedness of the second term follows immediately,
I [ RO )= e dt g

< JR XL =Dl dt || f [l 2y Co 1 F Nlzeary -

Thus,
I [X, P1f 2 < (Cr+ Co) || f 2= C Il f 2y
and hence,
I [X, P] llop< C
Also,
[X, %”]P — [X,W]P +[X, Lt(% —1) 0 % () dr in]P

Lo
~ 5 . X
— (U + Xain)P + [X,f (70‘ ~ 1) 0 ¢ (x) dr in]P
0
. 5 . [t Xa
= U+ (a—1)in—(a—1)in+ Xain)P + [X,f (— —1)0¢¥(z) dr in]P
0%
— HP + (Xa—a+1)inP +[X J ——1) oY (x) dr in]P

In order to bound the following term,

XJ——l W (2) dr in]
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we need the following,

Do) =t o at” + ([ 52~ ool ) dryino gt

0

(Please see 6.4 for this derivation.) Let
! Xa .
Gla,t) = (— — ooy (x)dr
«

Xf——l oV (2) dr in

_x( f (X 1) 0 ) (w) dryin — (7 f O 1) @) dr) R

« (0%
t

= 4 | o 0106 ool wydrin = 1 | (W Gla,tin) ("ot (@)drin

0 0

X X t X
= Cledl = 0in (7 | Glat( %) 0o (@) dr in)in

a 0

So,

~

H H(tw+a(a i)~ ) o ¥ dr |0

Xa Gla,t) Xa
R e P e
a t o
Xa Xa Xa
<2n || — [lo + ||(——1) — [l
«Q «Q
Xa Xa Xa
<2n- | — o +n? || (— = 1) [loll — llo
«Q « Qo

< 2nC, + n*(Cy + 1)C,.

Thus, [X, @]P extends to a bounded operator on Ran(H,) with operator norm
uniformly bounded in ¢:

H{(t)

| [X, —=Z]P ||op< (CL + n(C,Co + C., + 1)Ch) + (2nCy + n*(Cy + 1)Cy)Oh.

- Ht
| P15 PP bt < 0

Hp(t) . _
Dy,
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< CL-C-(Cy, +n(Ch)2C,).

b:
| PQ[X,P]@PH? lop=1l P*[X, P1(H + @in)Pﬂﬁl lop
<Cp-C- ([ HP [lop + 7 || % loe Cp)- | Hp" llop
= C%-C - (Ch +nC,CH) Oyt
C:
1 e,
< CH(CH+n(CLCo + C + 1)Cp) + (2nCy + n*(Co + 1)Ca)Cp) it
d:
| IO PG s € (CF + nChC) O
e

A A~

(X, Hp'l = Hp'[Hp, X]Hp'
— Hp'[P, X|PHHR' + H' P[P, X|HH' + Hp' P?[X, H|HR".
11X Hp '] lop

<Cyl - C-CHCHL + CplCp-C - (CP) ™ + Ol (Crryp + CEn(CLCa + C, + 1)) O

1 PO bk ),
< Cp(Cup +n(Cp)°Co)(Cyyt - C - CHCYE + ClCp - C - (CE)
+CpL (Crp + CEn(CLCo + Cy + 1)Clh).
(ii).
[H,(t), Hp]Hp' = [tH, + PL(t)Pin, Hp|H, " = [PL(t)P, Hp|H}".
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= P’HL(t)PinH,' = PPWL(t)PinHp' — P*inPinHy"
= P3(& oy — &)mH;l — P*inPinHp".
a a
I TH, (), Hp]Hp" [lop
< 2nC’f’gCaC’I}; + nzCﬁ,C;I}l).
We have shown that the conditions of Theorem 3 are satisfied on Ran(Hp). We
would like to extend this to Ran(H). Recall that Hp depends upon a choice of

x € CF(R\{0}). For f € Dom(H), we can express the following in terms of integrals

involving the spectral projector as
Hf = | wdp)s,
R

Hef = | ax(@) @,
and since f € Dom(H),
J r? dE(x)f < +oo.
R
Let x be such that
x(z) =1 forxe (—K,—€)u (e, K) = I g
and supp(x) vanishes outside of I, k. Since on I ,
Hpf - HF,
we consider
Hpf—Hf
on R\/, g, i.e.,
Jo, =) - nar@y
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For |z| <,

lim || z(x(2) = 1) dE(z) f [[72()= lim 2(x(2) = DI* dE(2) f

=0 Jjaf<e =0 Jiz)<e

< 1im462f dE(z)f < lirr(l)lle2 | f L2y = 0-
|z|<e -

e—0

For |z| > K,
A z(x(z) = 1) dE(2)f [|72@)= lim jz(x(x) = D|* dE(z) f
=0 Jiz|=K K= Jjp1=K
< lim 42 dE(z)f =0
since
J 2? dE(x)f < +oo.
R
Thus,

inf Hpf—H = 0.
ceci i on | Hpf — Hf |l 20

So, for any H f, there exists a sequence {Hp,} such that
HPn - Hf7

and thus,

Ran(H) = {|_J Ran(Hp)}.

Consequently, for every f e Ran(H), puy is absolutely continuous.
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Chapter 4: Applications to Maps

The author in [29] uses the Mourre Estimate technique (described in 1.5.1) to prove
the following spectral results. Here we rederive these results by showing that the

conditions of the Theorem 3. are satisfied.

4.1 Skew Products over Translations

Let X be a compact metric abelian Lie group with normalized Haar measure u. Let

{F;} be a uniquely ergodic [9] translation flow (we assume that F} is ergodic),
F, = y,x with vector field Y.
The associated operators {V;} are given by
Vi = ) o F; with generator P = —i.%y.

Let G be a compact metric abelian group. Let ¢ : X — G such that ¢ can be

written as ¢ = &{n where £ is a group homomorphism and 7 satisfies

Ly(xon)oFy — ZLy(xon)
sup ||

<
Sur ; ) [l

and
xon=emn

20



for 7, € Dom(P) a real-valued function determined by x and 7.
The skew product, T : X x G — X x G, is defined by
T(x,2) = (1, 6(2)z)
with corresponding unitary operator
WU =woT.

Let G be the character group of G. The decomposition L*(X x G) = @, & Ly

xeG

and the restriction of W to the subspaces L, allow us to study the spectrum of

convenient, unitarily equivalent operators to W/, namely,

Uy = (x o )Vi9 (here U, takes the place of eV as given in the conditions)
for Yo & # 1.

We will choose to take the commutator with P; from [1], P is essentially self-adjoint.

Let D = C*(X).

Remark: Describing these systems in full generality inevitably leads to cumbersome

notation. In an effort to simplify the reading, we provide the following example:

Let X,G=5' Forze X and ze€ G and v € S*,
T(e.2) = (0, 6(a)2).
¢ = e, and n = e, for ¢ and 7j real valued functions.

x(y) = y* for k € Z\{0}, and thus, x 0 ¢ = ™% and y on = €.
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U = e™ @y (ax)

d
P=_—i—.
de

Now we compute the commutators using the general notation.
[P, U] = [P, (x o o)W1] = [P, (x 0 )1 ]V4
= —iZy(x o 9)Vi = —i[L(x o) (xon) + (x o &)Ly (xeon)Vi

=il + T (x 0 )V = —iléo + TR

(xom) (xon)
where & = 4 (x © &)(ye)| =0 € {R\{0}.
So,
. iZy(xon)
PU,| = (-i§ — —F—————)U, = GU,.
[P.0y) = (=it — =25
Thus,
U [P, U"] Zk U kGUk
° L%y )
,;1 (x o n) ;1
Note that

Cie(xon)  —i(e™)  —iet Bl)
(X © 7)) a etiix B eilx B _Z$Y<UX) - an

From unique ergodicity we get the following convergence

H
i L0 — ity + [ P dyu -
n—0o0 n X

uniformly in n for v € L,.
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Since

1 g
| <UL f >0 e = ;J <ePUlf. el f > ds |leg) -
0
the preliminary assumptions are satisfied with By = By = I.
(1) It is unnecessary to consider coboundaries since both H = —i&yl and H~* = X1

o

are constants. Instead we take any f € L,.

HO) e (AN, 000y oy e AN ey L
w = G it = =)o F ) e f = F () Pl ) f
So,
Hn) | Py ||,
I =—H"f < (1+T)' I f e, -
Since 7, € Dom/(P),
I Py |z, < Ch.

Thus, @H ~1 is a bounded operator with uniformly bounded norm in n,

H(n)H™!

G

[€ol

lop< 1+
Also,

1= T o=l (1= (04 G Y Pico P D)1 i,
k=1 0
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and thus,

. Hn) . 1< ]
limsup || I — H o< lim su - —
msup | o imsup | ;33 Pco ) &
{ N
= = | Pixdpo=0
o Jx
Hence,
H
timsup || 7+ XM g1, <1
n—00 n
(12)
H(n) 1l i 1l i
P, H PI+(—) Pip,oF_) —I|l=[P,(—) Pn,oF_) —I
(P = (P G S P Foa) o) = (PG 3 P P )

k
Since sup,., || 22 XO")OFt Loy || < o, P(Pf,) is bounded in L, and

| P(Piiy) iy

It %

<

) N F s

Thus, [P, HT(L")H ~!] extends to a bounded operator on L, with uniformly bounded

norm in n,

H C
W o

1P,

(7ii) Since the operator H is just multiplication by the constant —i&,
[H(n), H|IH ' = 0.
Thus, condition (7i7) is immediately satisfied.
Since conditions (i), (i7), and (i7é) of Theorem 3 are satisfied on each L,, we

have shown that the operator U, has purely absolutely continuous spectrum on
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L,. Thus, W has purely absolutely continuous spectrum when restricted to the

subspace P L,.

x€G,xoE#1
In addition, from the purity law in [14] extended to translations, the maximal spec-
tral type is either purely Lebesgue, purely singularly continuous, or purely discrete
with respect to u (the Haar measure). Since we know that the spectrum is absolutely

continuous from above, we have rederived the following result from [29],

Theorem 7. The operator U, has Lebesgue spectrum on L,. Thus, W has countable

Lebesque spectrum when restricted to the subspace @Xeaxo&él L,.

4.2  Furstenberg Transformations

Let u, be the normalized Haar measure on T" ~ R"/Z" and H,, = L*(T", pi,,). Let
Ty:T? — T d > 2, be the uniquely ergodic map [9]

Td(*rla Zo, "'7'17(1) =
(1 +y, 2 + bo1xy + hy(21), ..., 0q + bair1 + -+ - + bag_1Ta—1 + ha_1 (71,22, ..., 24_1))

(mod Z7.4)

for y €e R\Q, bjx € Z, bjy—y # 0, and [ € {2,....d}. (For n = 2, we get the skew
product in 4.1). Let each h; : TV — R satisfy a uniform Lipschitz condition in z;
and be in C?(TY). What follows is very similar to the case of the skew products over

translations. We begin by considering the operator

Wd : /Hd —>Hd.
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The space Hy can be decomposed into

Hq = Hi @je{Q,...d},keZ\{O} Hik

for H, . = Span{n @ xx|n € H,_1} and yi(z;) = e™*% € T,

The restriction of Wy, Wyls, , is unitarily equivalent to the operator
Uj,kn _ 62m’k¢j VVj—lTl

for ne ijl and (bj(l‘l, Ty ouny l’jfl) = 0111 + -+ ijjflefl + hjfl(l'l, Ty ouny $j,1).

We will choose to take the commutator with P,y = —id;_1, the essentially self-

adjoint [1] generator of the translation group {V; j_1}er in H;_1. Let D = C°(TV71).

[Py, Uji] = [Pj1, ™ 5 IW;
— 00, (XYW, = (2mkby 1 + 2mkd;_yhy_y ) RO,
So,
[Pyo1, U] = (21kby 1 + 27kd;1hy 1 )Ujse = GUj e

Thus,

U [P, Uyl = | QO UAGUL) = (O G o T = H(n).
=1 =1

From unique ergodicity we get the following convergence

H
lim (n)u = 27T]€bj7j_1 + Qka 8j_1hj_1 d,u = 27kaj’j_1u = Hu

n—00 n Ti—1
uniformly in n for ue D = H;_;.
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Since
1(° v .
” < U;fkfaf ZHj ”EQ(Z) = ” ;J < espjflU}?kf; espjflf > ds HgQ(Z) .
0

the preliminary assumptions are satisfied with By = By = I.

(¢) Tt is unnecessary to consider coboundaries since both H = 27kb; ;1] and H ! =

1
WI are constants. Instead we take any f e H,_;.

H( ) 1 " 1
= (=() (27kb, ;_y + 27kd;_1h;_1) o T ) - ———
n n ; T 7] 1+ ™ J 1 ] 1)0 ]—1)) 2'/Tk’b]7]_lf
1 & 1
— 2 ko:_1h; oty —— f
”z; ThOsahs) 71)27kaj,j71f
Hence,
H(n) | 27k0;1hj 1 |3,
—H < (1 J oo
| =0 T s (1 P | f

Since h;_; satisfies a uniform Lipschitz condition in z;_;,
| Oj—1hj—1 [lag,_ < Ch.

So @H ~! extends to a bounded operator on H;; with uniformly bounded norm

in n,
H 2kl || 0;_1h;_ .
H (n>H—1 H0p< 1+ | ™ | H J—1145-1 H'H]—l < Cy .
n |27kb; j 1| b1l
Also,
H(n ) 1 _l
[ — ——= - (2
”( n )f ”H] 1 H n; 7-(_]{;&] 1h’] 1 )2 kb]] 1)f ||H] 1
li 2mk0;_1hj_1) o T; ) o= |
n & i) kawl i
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1 n
—Z 27'(']{3&] 1h] 1 T_l)
=1

3

[E [ 7P

As a result of unique ergodicity, the following converges uniformly,

2k:b

J,J—1

1< 1 1
n1—I>I<3lo n; TROj—11t5— 1 o )271'/{?()]3 1 bj,j—l le(] 1hj—1 ap )
and thus,
. H(n) 1 : LS !
1 I— H',,<1 — > (2wkd;_1h; T TR
HJLSOI.}P I n lor 1211_)80101[) | n; ko) e )27kajj 1 e
1
:|| @j_1hj_1 dp ||oc: 0
bjj—1 Jri
Hence,
H
limsup || T + ﬂH_l lop< 1
n—0o0 n
(i)
H(n
[Pj1, )

1 " 1
H Y= I+ (=) (27k0;_1h; T—l — T
] J 15 + g TRO;—115— 1 © ) 27Tk'bj,j71 ]

3

1 y 1
= |Pj-1, —Z_: 2mk0;_1hj 1) qu)'mﬂ

3

Sl
[+

= ( (27rké’j_1(é’j_1hj_1)) o T._l ) . ;I

1 i1 271']{)(7]‘7]‘_1 .

Since hj—l € CQ(Tj_1>, &j_l(ﬁj_lhj_l) is bounded in Hj—ly

x>
Il

2 2y,

127k| || 05-1(0j-1hj—1) [l
< i1, < .
pEE— | f 1, < ’b“_ ’ | f -,

Thus, [P, @H ~!] extends to a bounded operator on #;_; with uniformly bounded

norm in n,

H(n) OQ
P——H] ||,p<
P, =1 o =
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(i77) Since the operator H is just multiplication by 27kb; ;_1,

[H(n), HIH™" = 0.

Thus, condition (7i7) is immediately satisfied.

Since conditions (4), (ii), and (ii7) of Theorem 1. are satisfied, we obtain the fol-
lowing result. The operator U, has purely absolutely continuous spectrum on each
H; . Thus, W, has purely absolutely continuous spectrum on the orthocomplement

of Hl.

Again from the purity law in [14], we rederive the following result from [29].

Theorem 8. W, has countable Lebesque spectrum on the orthocomplement of H, .
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Chapter 5:  Open Questions

5.1 Further Study of the Twisted Horocycle Flow

The properties of the subspace Ran(H) are linked to the properties of the cocyle

o— Jt(a C 1) o BV (2)ds

0

since
t

o (2,0) = (hY (x),0 + J (a — 1) o BY (x)ds).

0

To help understand the properties of a, it may be useful to consider both Anzai’s

Theorem [3] and results from the theory of Essential Values [26].

Also, we would like to determine the maximal spectral type on Ran(H).

5.2 Time-Changes of Nilflows

The 3-dimensional Heisenberg Group is a connected, simply connected, Lie Group
whose Lie Alebra is generated by two elements X, Y that satisfy the following com-

mutation relations:

[X,Y]=Zand [X,Z] =[Y,Z] = 0.
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In [4], the authors show that any nontrivial time-change of a uniquely ergodic Heisen-
berg nilflow is mixing. They mention that it is still unknown whether the spectrum
of mixing time-changes is singularly continuous, absolutely continuous, or possibly
mixed.

This is an example of when the best possible upper bound when satisfying the
conditions of Theorem 3 is achieved with g = %, for which we cannot determine
square-integrability of the spectral measure. It is of interest to develop tools to

include such borderline cases.
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Appendix 6: Appendix

6.1 Detailed Computation for Resolvent Estimates for the Horocycle

Flow

We will use the following important identities,

d%R(z) - dilz(w — ) = (U —2) 21 = (iU — 2)% = R(2)%,
[R(2), X] = R(2)X — XR(2)
— R(2)X (iU — 2)R(2) — R(2)(iU — 2) X R(z)
— R(2)XiUR(z) — R(2)iUXR(z) = R(2)[X,iU]R(z)

and since [X,iU] = iU,

For f € Dom(X),

d

z%F(z) =—F(z)—-<R(2)f,Xf>+<Xf,RE)f >.

Let || - [|=] - [|z2(am,vor)- Given our choice of z, the following equality holds,

I R)f =l RG)S l= i2 - [ZmF ()],
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Using the above bound, we have the following inequality,

\%F(Aﬂ'u)\ <RGN+ TRELN-TXFN+1RE £

=M F I +2 I XD IR

D=

<SP £ +2 0 XF 1) -2 [FO A+ i) (6.1)

We divide both sides by [F(A + ip)|z, and since |[F(A + i)z = [F(A +ip)2], we

obtain, after integrating with respect to p for 0 < p < 1,

N (L mod N 1 1
[FA+ip)[> = |[F(A +iz)[> < IﬁF(A +ip)[2dp < 27T +2 [ XF Dpe.
Since the right hand side is maximized when p = 1,

NS (L _
[FO+ i)z < [FO+ )z + 27 +2 1 X))
We use this to bound the right hand side of (1).
MTHUF I +2 0 XF a2 FO+ dp)]2

<SPS I4+2 0 XF IDe2 (P2 + 27 F I +2 1 XF 1))

AN IXE ol XD
—(|)\|_1+2 e Y 2(|F (X +1)| +|(2|)\|_1+4 e ).
Let
N
D
X7
"=



ol

c=|F(\+1)]
Now we have

,u_%(a + 2b)(c + 2a + 4b) = pf%(ac + 2a® + 4ab + 2bc + 4ab + 8b?)

2 2 2
ZM_%(£+2@2 8a*b  2b°c 81?)
a a b
_1, 9,C 8b 5, 2C
= —+24+ —)+b(—+8
pHEE T2+ D)+ 12+ 9)
Let
8h. 2
M:max{(a2(§+2 E),(—C 8)}

Since A is bounded away from 0, the following inequality holds,

M
(LFIZ+2 0 Xf 1%,

d
—F\+p)| < —
( )| Vi

dp
The above inequality enables us to show the following is finite,
bod "' M
J, 1gpF O il | 12X 1 d
=2M(|[ fI* 42 || X[ |I*) <o,

which implies the existence of lim, o F/(X + ip).

6.2 Commutator Calculation for the Horocycle Flow

(h,g)*(5’> = atU + ti + CtX

for a general vector field S on M.

d dat dbt dCt
— (W), (S) = —U + —V + —X.
dt< 0 )+(S) a - T T w
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Also,
(R%0)x(S) = (a0 BY) (1) (U) + (b 0 BZ) (R4 (V) + (e 0 BY,) () (X).

If we take the derivative with respect to s at s = 0, we have

SO 1(S) = ~(Ua)U + (BT, V] = Ub)U + ([T, X] — Ue) X,

and thus,

d b, d
%U IV %X — —(Ua)U + (0,[U, V] = Ub)U + (e,[U.X] — Ucy) X.

We now have

%(atohij) = thij—k(Uat)oht
d db
- (b ohV) = d—tt o hY + (Ub) o hY
d dc
E(ctohgf) — d—tt ohV — (Ue;) o WY

which gives

d d d
[%(ao AU o hY + [a(bo AV o Y + [E(co hU)]X o Y

= (b o ) )[U, V]ohi + (ceo b )[U, X] o by

= (byoh)X o hY + (¢, 0 YU o BY

%(atOh?):CtOh?

Gibeoh)=0

%(Ctoh?):btoh?
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Let a; = a; o hY, by = by o hY, and ¢ = ¢; o hY.

When S = X, the initial condition is (ag, by, co) = (0,0, 1).

ay =t
by =0
& =1
—
a;=toh¥, =
by =0
cc=10hY, =1
o
Dh(X) =[tUohl + X o hY
and

6_tU[X, etU] _

6.3 Commutator Calculation for the Time-Changes of the Horocycle

Flow

From [8].

(h{*)«(S) = aUs + bV + ¢ X
for a general vector field S on M. If we follow the calculation in 4.2, we get

d d d
[ (00 BE)Ua 0 B 4 [ (b o )]V + [ (e 0 h)IX o B
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= (b 0 1) [Ua, V1o 1 + (e © hi*)[Ua, X] 0 By

X
= (by o V) (X Jar + %Ua) o hd* 4 (¢ 0 hfa)(%‘ — 1)U, 0 he

1 v X
= (b= 0 WY*)X 0 hV + (b—= o hV=)U, o hY" + (e,(== — 1) 0 AV*)U, o hle
Y « (6%
%(atoh?"‘) :bt%oh% +o(32 - ) © hi
Lbyoh*)=0
%(ct ohl = bté o hl®

When S = X, the initial condition is (ag, by, ¢co) = (0,0, 1).

a; = Sé(% — 1) o ¥, (z)dr

bt:O
Ctzl
EN
U ' Xa U U U
Dhy>(X) = ( (7—1)OhT“(x)dT)Ua0ht°‘—I—XOht‘l
0
and

U = | ([ (FE = 1) o W @)U,

6.4 Commutator Calculation for the Twisted Horocycle Flow

d
(01)(8) = aW + bV + X +dizs

67



for a general vector field S on M. Again if we follow 4.2 we obtain

d

d W w1 ¢ w w4 w w w9
[a(atoq% )W o, +[%(bto¢t Voo, +[%(Cto¢t )] X o, +[£(dt0¢t )]@

= (b o)W, V]od) + (crod))[W. X]o g/
= (beogr” )(X+Va—) o) + (CtocbtW)(UJrXOé—) oy
= (bod )X og + (Vaos) ) oy +(cop )Uod)
+HeXao g ) opy + (o) )Oé—ocbt —(cod) )Oé—ocbt

= (b0 )X 0d) + (c,od) YW o) + (bVaod +c(Xa—a)og )

%(dtwav) =bVaodl +c(Xa—a)oplV

When S = X, the initial condition is (ay, by, co, do) = (0,0, 1,0).

(ltZt
bt:O
Ct:O

dy = Sé(on —a)o W, dr
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t t d
eI, M = ( f Lo W dnW + ( f (X~ a)o ol dr) =

t

=|tW + (L (Xa—a)o gbZVdT)die
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