3,019 research outputs found

    The pointing errors of geosynchronous satellites

    Get PDF
    A study of the correlation between cloud motion and wind field was initiated. Cloud heights and displacements were being obtained from a ceilometer and movie pictures, while winds were measured from pilot balloon observations on a near-simultaneous basis. Cloud motion vectors were obtained from time-lapse cloud pictures, using the WINDCO program, for 27, 28 July, 1969, in the Atlantic. The relationship between observed features of cloud clusters and the ambient wind field derived from cloud trajectories on a wide range of space and time scales is discussed

    Large-scale circulation departures related to wet episodes in northeast Brazil

    Get PDF
    Large scale circulation features are presented as related to wet spells over northeast Brazil (Nordeste) during the rainy season (March and April) of 1979. The rainy season season is devided into dry and wet periods, the FGGE and geostationary satellite data was averaged and mean and departure fields of basic variables and cloudiness were studied. Analysis of seasonal mean circulation features show: lowest sea level easterlies beneath upper level westerlies; weak meridional winds; high relative humidity over the Amazon basin and relatively dry conditions over the South Atlantic Ocean. A fluctuation was found in the large scale circulation features on time scales of a few weeks or so over Nordeste and the South Atlantic sector. Even the subtropical High SLP's have large departures during wet episodes, implying a short period oscillation in the Southern Hemisphere Hadley circulation

    Wages, Benefits, Hours, Commuting Time, and License Renewal for Iowa Registered Nurses

    Get PDF
    The Iowa Board of Nursing licensing database for Registered Nurses (RNs) contains information on Registered Nurses who have renewed their licenses including age, race, gender, education, and location of employment.  It also contains comparable information on nurses who opted not to renew at the time of their last renewal. This report contains an analysis of the nurses’ characteristics that increase the likelihood of license renewal based on all useable information contained in the licensing database.  In addition, we randomly sampled subpopulations of nurses who had current licenses and nurses who had allowed their licenses to expire.  A survey of these nurses was analyzed to provide insights into the effects of individual wages, benefits, family income, family responsibilities, hours worked, and commuting time on the decision to work, work in nursing, and maintain a nursing license. Wages; workforce; benefits; labor force; nurses; health care

    Theory of tailorable optical response of two-dimensional arrays of plasmonic nanoparticles at dielectric interfaces

    No full text
    Two-dimensional arrays of plasmonic nanoparticles at interfaces are promising candidates for novel optical metamaterials. Such systems materialise from ‘top–down’ patterning or ‘bottom–up’ self-assembly of nanoparticles at liquid/liquid or liquid/solid interfaces. Here, we present a comprehensive analysis of an extended effective quasi-static four-layer-stack model for the description of plasmon-resonance-enhanced optical responses of such systems. We investigate in detail the effects of the size of nanoparticles, average interparticle separation, dielectric constants of the media constituting the interface, and the nanoparticle position relative to the interface. Interesting interplays of these different factors are explored first for normally incident light. For off-normal incidence, the strong effects of the polarisation of light are found at large incident angles, which allows to dynamically tune the reflectance spectra. All the predictions of the theory are tested against full-wave simulations, proving this simplistic model to be adequate within the quasi-static limit. The model takes seconds to calculate the system’s optical response and makes it easy to unravel the effect of each system parameter. This helps rapid rationalization of experimental data and understanding of the optical signals from these novel ‘metamaterials’, optimised for light reflection or harvesting

    Nanoparticle meta-grid for enhanced light extraction from light emitting devices

    Get PDF
    Based on a developed theory, we show that introducing a meta-grid of sub-wavelength-sized plasmonic nanoparticles (NPs) into existing semiconductor light-emitting-devices (LEDs) can lead to enhanced transmission of light across the LED-chip/encapsulant interface. This results from destructive interference between light reflected from the chip/encapsulant interface and light reflected by the NP meta-grid, which conspicuously increase the efficiency of light extraction from LEDs. The “meta-grid”, should be inserted on top of a conventional LED chip within its usual encapsulating packaging. As described by the theory, the nanoparticle composition, size, interparticle spacing, and distance from the LED-chip surface can be tailored to facilitate maximal transmission of light emitted from the chip into its encapsulating layer by reducing the Fresnel loss. The analysis shows that transmission across a typical LED-chip/encapsulant interface at the peak emission wavelength can be boosted up to ~99%, which is otherwise mere ~84% at normal incidence. The scheme could provide improved transmission within the photon escape cone over the entire emission spectrum of an LED. This would benefit energy saving, in addition to increasing the lifetime of LEDs by reducing heating. Potentially, the scheme will be easy to implement and adopt into existing semiconductor-device technologies, and it can be used separately or in conjunction with other methods for mitigating the critical angle loss in LEDs

    A study to define meteorological uses and performance requirements for the Synchronous Earth Observatory Satellite

    Get PDF
    The potential meteorological uses of the Synchronous Earth Observatory Satellite (SEOS) were studied for detecting and predicting hazards to life, property, or the quality of the environment. Mesoscale meteorological phenonmena, and the observations requirements for SEOS are discussed along with the sensor parameters

    A Congestion Controlled Logical Topology for Multihop Optical Networks

    Get PDF
    This paper considers the problem of designing the logical topology for any wavelength routed optical network, given the traffic matrix. An heuristic algorithm is proposed here for designing topologies based on the De-Bruijn graph and we compare our results with those obtained through the deterministic approach. The De-Bruijn graph is selected in this context as the logical topology due to some of its characteristic features like simple routing scheme, low diameter and small degree

    Electrotunable nanoplasmonic liquid mirror

    Get PDF
    Recently, there has been a drive to design and develop fully tunable metamaterials for applications ranging from new classes of sensors to superlenses among others. Although advances have been made, tuning and modulating the optical properties in real time remains a challenge. We report on the first realization of a reversible electrotunable liquid mirror based on voltage-controlled self-assembly/disassembly of 16 nm plasmonic nanoparticles at the interface between two immiscible electrolyte solutions. We show that optical properties such as reflectivity and spectral position of the absorption band can be varied in situ within ±0.5 V. This observed effect is in excellent agreement with theoretical calculations corresponding to the change in average interparticle spacing. This electrochemical fully tunable nanoplasmonic platform can be switched from a highly reflective ‘mirror’ to a transmissive ‘window’ and back again. This study opens a route towards realization of such platforms in future micro/nanoscale electrochemical cells, enabling the creation of tunable plasmonic metamaterials

    Optimized gold nanoshell ensembles for biomedical applications

    Get PDF
    We theoretically study the properties of the optimal size distribution in the ensemble of hollow gold nanoshells (HGNs) that exhibits the best performance at in vivo biomedical applications. For the first time, to the best of our knowledge, we analyze the dependence of the optimal geometric means of the nanoshells’ thicknesses and core radii on the excitation wavelength and the type of human tissue, while assuming lognormal fit to the size distribution in a real HGN ensemble. Regardless of the tissue type, short-wavelength, near-infrared lasers are found to be the most effective in both absorption- and scattering-based applications. We derive approximate analytical expressions enabling one to readily estimate the parameters of optimal distribution for which an HGN ensemble exhibits the maximum efficiency of absorption or scattering inside a human tissue irradiated by a near-infrared laser
    • 

    corecore