669 research outputs found

    Superconductivity

    Get PDF
    Ripon Professorship Lecture for 1953 delivered at IACS in 195

    Spin-density wave Fermi surface reconstruction in underdoped YBa2Cu3O6+x

    Full text link
    We consider the reconstruction expected for the Fermi surface of underdoped YBa2Cu3O6+x in the case of a collinear spin-density wave with a characteristic vector Q=(pi[1+/-2 delta],pi), assuming an incommensurability delta~0.06 similar to that found in recent neutron scattering experiments. A Fermi surface possibly consistent with the multiple observed quantum oscillation frequencies is obtained. From the low band masses expected using this model as compared with experiment, a uniform enhancement of the quasiparticle effective mass over the Fermi surface by a factor of ~7 is indicated. Further predictions of the Fermi surface topology are made, which may potentially be tested by experiment to indicate the relevance of this model to underdoped YBa2Cu3O6+x.Comment:

    Dirac nodal pockets in the antiferromagnetic parent phase of FeAs superconductors

    Full text link
    We show that previously measured small Fermi surface pockets within the antiferromagnetic phase of SrFe2As2 and BaFe2As2 are consistent with a Dirac dispersion modulated by interlayer hopping, giving rise to a Dirac point in k-space and a cusp in the magnetic field angle-dependent magnetic quantum oscillation frequencies. These findings support the existence of a nodal spin-density wave in these materials, which could play an important role in protecting the metallic state against localization effects. The speed of the Dirac fermions in SrFe2As2 and BaFe2As2 is found to be 14-20 times slower than in graphene, suggesting that the pnictides provide a laboratory for exploring the effects of strongly interacting Dirac fermions.Comment: 4 page

    Magnetization in two-dimensional electron gas in a perpendicular magnetic field: the roles of edge states and spin-orbit coupling

    Full text link
    We study the de Haas--van Alphen (dHvA) oscillations in the magnetization of a two-dimensional electron gas (2DEG) under the influence of the edge states and/or the Rashba spin-orbit interaction (SOI). The boundaries of the systems lift partially the degeneracies of Landau levels (LL's) and the resulting edge states lead to the changes of both the center and the amplitude of the sawtoothlike magnetization oscillation. The SOI mixes the spin-up and spin-down states of neighboring LL's into two unequally spaced energy branches. The inclusion of SOI changes the well-defined sawtooth pattern of the dHvA oscillations in the magnetization. The weaker the magnetic field is, the larger is the change of the dHvA oscillations due to the edge effect and/or the spin-orbit coupling. Some theoretical results are compared with the experimental data.Comment: 9 pages, 9 figure

    Thermodynamic properties of Pb determined from pressure-dependent critical-field measurements

    Full text link
    We have carried out extensive low-temperature (1.5 to 10 K) measurements of the critical field, HcH_c, for the element Pb up to a pressure of P=1.2P=1.2 GPa. From this data the electronic entropy, specific heat, thermal expansion coefficient and compressibility is calculated as a function of temperature, pressure and magnetic field. The zero-field data is consistent with direct thermodynamic measurements and the PP-dependence of TcT_c and specific heat coefficient, γ(T,P)\gamma(T,P) allows the determination of the PP-dependence of the pairing interaction.Comment: 5 pages, 6 figures, in press Phys. Rev.

    Fermi Surface of Cr1x_{1-x}Vx_x across the Quantum Critical Point

    Get PDF
    We have measured de Haas-van Alphen oscillations of Cr1x_{1-x}Vx_x, 0x0.050 \le x \le 0.05, at high fields for samples on both sides of the quantum critical point at xc=0.035x_c=0.035. For all samples we observe only those oscillations associated with a single small hole band with magnetic breakdown orbits of the reconstructed Fermi surface evident for x<xcx<x_c. The absence of oscillations from Fermi surface sheets most responsible for the spin density wave (SDW) in Cr for x>xcx>x_c is further evidence for strong fluctuation scattering of these charge carriers well into the paramagnetic regime. We find no significant mass enhancement of the carriers in the single observed band at any xx. An anomalous field dependence of the dHvA signal for our x=0.035x=0.035 crystal at particular orientations of the magnetic field is identified as due to magnetic breakdown that we speculate results from a field induced SDW transition at high fields.Comment: 8 pages with 7 figure

    Angular-dependent oscillations of the magnetoresistance in Bi_2Se_3 due to the three-dimensional bulk Fermi surface

    Full text link
    We observed pronounced angular-dependent magnetoresistance (MR) oscillations in a high-quality Bi2Se3 single crystal with the carrier density of 5x10^18 cm^-3, which is a topological insulator with residual bulk carriers. We show that the observed angular-dependent oscillations can be well simulated by using the parameters obtained from the Shubnikov-de Haas oscillations, which clarifies that the oscillations are solely due to the bulk Fermi surface. By completely elucidating the bulk oscillations, this result paves the way for distinguishing the two-dimensional surface state in angular-dependent MR studies in Bi2Se3 with much lower carrier density. Besides, the present result provides a compelling demonstration of how the Landau quantization of an anisotropic three-dimensional Fermi surface can give rise to pronounced angular-dependent MR oscillations.Comment: 5 pages, 5 figure

    Damping of field-induced chemical potential oscillations in ideal two-band compensated metals

    Full text link
    The field and temperature dependence of the de Haas-van Alphen oscillations spectrum is studied for an ideal two-dimensional compensated metal. It is shown that the chemical potential oscillations, involved in the frequency combinations observed in the case of uncompensated orbits, are strongly damped and can even be suppressed when the effective masses of the electron- and hole-type orbits are the same. When magnetic breakdown between bands occurs, this damping is even more pronounced and the Lifshits-Kosevich formalism accounts for the data in a wide field range.Comment: 11 pages, 10 figures, to appear in PR

    Shubnikov-de Haas oscillations in SrTiO3\LaAlO3 interface

    Full text link
    Quantum magnetic oscillations in SrTiO3/\LaAlO3 interface are observed. The evolution of their frequency and amplitude at various gate voltages and temperatures is studied. The data are consistent with the Shubnikov de-Haas theory. The Hall resistivity rho exhibits nonlinearity at low magnetic field. It is fitted assuming multiple carrier contributions. The comparison between the mobile carrier density inferred from the Hall data and the oscillation frequency suggests multiple valley and spin degeneracy. The small amplitude of the oscillations is discussed in the framework of the multiple band scenario

    Magnetization of small lead particles

    Full text link
    The magnetization of an ensemble of isolated lead grains of sizes ranging from below 6 nm to 1000 nm is measured. A sharp disappearance of Meissner effect with lowering of the grain size is observed for the smaller grains. This is a direct observation by magnetization measurement of the occurrence of a critical particle size for superconductivity, which is consistent with Anderson's criterion.Comment: 7 pages, 5 figures, Submitted to PR
    corecore