1,155 research outputs found

    PPM-Extended (PPMX) - a catalogue of positions and proper motions

    Full text link
    Aims: We build a catalogue PPM-Extended (PPMX) on the ICRS system which is complete down to a well-defined limiting magnitude and contains the best presently available proper motions to be suited for kinematical studies in the Galaxy. Methods: We perform a rigorous weighted least-squares adjustment of individual observations, spread over more than a century, to determine mean positions and proper motions. The stellar content of PPMX is taken from GSC 1.2 supplemented by catalogues like ARIHIP, PPM and Tycho-2 at the bright end. All observations have been weighted according to their individual accuracy. The catalogue has been screened towards rejecting false entries in the various source catalogues. Results: PPM-Extended (PPMX) is a catalogue of 18,088,920 stars containing astrometric and photometric information. Its limiting magnitude is about 15.2 in the GSC photometric system. PPMX consists of three parts: a) a survey complete down to R_U = 12.8 in the magnitude system of UCAC2; b) additional stars of high-precision proper motions, and c) all other stars from GSC 1.2 identified in 2MASS. The typical accuracy of the proper motions is 2mas/y for 66 percent of the survey stars (a) and the high-precision stars (b), and about 10 mas/y for all other stars. PPMX contains photometric information from ASCC-2.5 and 2MASS.Comment: 9 pages, 8 figures, accepted for publication in Astronomy and Astrophysic

    Optical control of coherent interactions between quantum dot electron spins

    Full text link
    Coherent interactions between spins in quantum dots are a key requirement for quantum gates. We have performed pump-probe experiments in which pulsed lasers emitting at different photon energies manipulate two distinct subsets of electron spins within an inhomogeneous InGaAs quantum dot ensemble. The spin dynamics are monitored through their precession about an external magnetic field. These measurements demonstrate spin precession phase shifts and modulations of the magnitude of one subset of oriented spins after optical orientation of the second subset. The observations are consistent with results from a model using a Heisenberg-like interaction with microeV-strength.Comment: 5 pages, 4 figure

    Effect of pump-probe detuning on the Faraday rotation and ellipticity signals of mode-locked spins in InGaAs quantum dots

    Full text link
    We have studied the Faraday rotation and ellipticity signals in ensembles of singly-charged (In,Ga)As/GaAs quantum dots by pump-probe spectroscopy. For degenerate pump and probe we observe that the Faraday rotation signal amplitude first grows with increasing the time separation between pump and probe before a decay is observed for large temporal separations. The temporal behavior of the ellipticity signal, on the other hand, is regular: its amplitude decays with the separation. By contrast, for detuned pump and probe the Faraday rotation and ellipticty signals both exhibit similar and conventional behavior. The experimental results are well described in the frame of a recently developed microscopic theory [Phys. Rev. B 80, 104436 (2009)]. The comparison between calculations and experimental data allows us to provide insight into the spectral dependence of the electron spin precession frequencies and extract the electron g-factor dependence on energy.Comment: 9 pages, 7 figure

    Identification of a Protein in Several Borrelia Species which is Related to OspC of the Lyme Disease Spirochetes.

    Get PDF
    Using oligonucleotide probes which have previously been shown to be specific for the ospC gene found in the Lyme disease spirochete species Borrelia burgdorferi, B. garinii, and group VS461, we detected an ospC homolog in other Borrelia species including B. coriaceae, B. hermsii, B. anserina, B. turicatae, and B. parkeri. In contrast to the Lyme disease spirochetes, which carry the ospC gene on a 26-kb circular plasmid, we mapped the gene in other Borrelia species to linear plasmids which varied in size among the isolates tested. Some isolates carry multiple copies of the gene residing on linear plasmids of different sizes. The analyses conducted here also demonstrate that these Borrelia species contain a linear chromosome. Northern (RNA) blot analyses demonstrated that the gene is transcriptionally expressed in all species examined. High levels of transcriptional expression were observed in some B. hermsii isolates. Transcriptional start site analyses revealed that the length of the untranslated leader sequence was identical to that observed in the Lyme disease spirochete species. By Western blotting (immunoblotting) with antiserum (polyclonal) raised against the OspC protein of B. burgdorferi, we detected an immunoreactive protein of the same molecular weight as the OspC found in Lyme disease spirochete species. The results presented here demonstrate the presence of a protein that is genetically and antigenically related to OspC which is expressed in all species of the genus Borrelia tested

    Parton Distributions and New Physics Searches: the Drell-Yan Forward-Backward Asymmetry as a Case Study

    Full text link
    We discuss the sensitivity of theoretical predictions of observables used in searches for new physics to parton distributions (PDFs) at large momentum fraction xx. Specifically, we consider the neutral-current Drell-Yan production of gauge bosons with invariant masses in the TeV range, for which the forward-backward asymmetry of charged leptons from the decay of the gauge boson in its rest frame is a traditional probe of new physics. We show that the qualitative behaviour of the asymmetry depends strongly on the assumptions made in determining the underlying PDFs. We discuss and compare the large-xx behaviour of various different PDF sets, and find that they differ significantly. Consequently, the shape of the asymmetry observed at lower dilepton invariant masses, where all PDF sets are in reasonable agreement because of the presence of experimental constraints, is not necessarily reproduced at large masses where the PDFs are mostly unconstrained by data. It follows that the shape of the asymmetry at high masses may depend on assumptions made in the PDF parametrization, and thus deviations from the traditionally expected behaviour cannot be taken as a reliable indication of new physics. We demonstrate that forward-backward asymmetry measurements could help in constraining PDFs at large xx and discuss the accuracy that would be required to disentangle the effects of new physics from uncertainties in the PDFs in this region.Comment: 27 pages, 20 figure

    The prolate-to-oblate shape transition of phospholipid vesicles in response to frequency variation of an AC electric field can be explained by the dielectric anisotropy of a phospholipid bilayer

    Full text link
    The external electric field deforms flaccid phospholipid vesicles into spheroidal bodies, with the rotational axis aligned with its direction. Deformation is frequency dependent: in the low frequency range (~ 1 kHz), the deformation is typically prolate, while increasing the frequency to the 10 kHz range changes the deformation to oblate. We attempt to explain this behaviour with a theoretical model, based on the minimization of the total free energy of the vesicle. The energy terms taken into account include the membrane bending energy and the energy of the electric field. The latter is calculated from the electric field via the Maxwell stress tensor, where the membrane is modelled as anisotropic lossy dielectric. Vesicle deformation in response to varying frequency is calculated numerically. Using a series expansion, we also derive a simplified expression for the deformation, which retains the frequency dependence of the exact expression and may provide a better substitute for the series expansion used by Winterhalter and Helfrich, which was found to be valid only in the limit of low frequencies. The model with the anisotropic membrane permittivity imposes two constraints on the values of material constants: tangential component of dielectric permittivity tensor of the phospholipid membrane must exceed its radial component by approximately a factor of 3; and the membrane conductivity has to be relatively high, approximately one tenth of the conductivity of the external aqueous medium.Comment: 17 pages, 6 figures; accepted for publication in J. Phys.: Condens. Matte
    corecore