2,636 research outputs found
Critical exponents of the pair contact process with diffusion
We study the pair contact process with diffusion (PCPD) using Monte Carlo
simulations, and concentrate on the decay of the particle density with
time, near its critical point, which is assumed to follow . This model is known for its slow
convergence to the asymptotic critical behavior; we therefore pay particular
attention to finite-time corrections. We find that at the critical point, the
ratio of and the pair density converges to a constant,
indicating that both densities decay with the same powerlaw. We show that under
the assumption , two of the critical exponents of
the PCPD model are and , consistent with
those of the directed percolation (DP) model
SAWdoubler: a program for counting self-avoiding walks
This article presents SAWdoubler, a package for counting the total number
Z(N) of self-avoiding walks (SAWs) on a regular lattice by the length-doubling
method, of which the basic concept has been published previously by us. We
discuss an algorithm for the creation of all SAWs of length N, efficient
storage of these SAWs in a tree data structure, and an algorithm for the
computation of correction terms to the count Z(2N) for SAWs of double length,
removing all combinations of two intersecting single-length SAWs.
We present an efficient numbering of the lattice sites that enables
exploitation of symmetry and leads to a smaller tree data structure; this
numbering is by increasing Euclidean distance from the origin of the lattice.
Furthermore, we show how the computation can be parallelised by distributing
the iterations of the main loop of the algorithm over the cores of a multicore
architecture. Experimental results on the 3D cubic lattice demonstrate that
Z(28) can be computed on a dual-core PC in only 1 hour and 40 minutes, with a
speedup of 1.56 compared to the single-core computation and with a gain by
using symmetry of a factor of 26. We present results for memory use and show
how the computation is made to fit in 4 Gbyte RAM. It is easy to extend the
SAWdoubler software to other lattices; it is publicly available under the GNU
LGPL license.Comment: 29 pages, 3 figure
The impact of heat waves and cold spells on mortality rates in the Dutch population.
We conducted the study described in this paper to investigate the impact of ambient temperature on mortality in the Netherlands during 1979-1997, the impact of heat waves and cold spells on mortality in particular, and the possibility of any heat wave- or cold spell-induced forward displacement of mortality. We found a V-like relationship between mortality and temperature, with an optimum temperature value (e.g., average temperature with lowest mortality rate) of 16.5 degrees C for total mortality, cardiovascular mortality, respiratory mortality, and mortality among those [Greater and equal to] 65 year of age. For mortality due to malignant neoplasms and mortality in the youngest age group, the optimum temperatures were 15.5 degrees C and 14.5 degrees C, respectively. For temperatures above the optimum, mortality increased by 0.47, 1.86, 12.82, and 2.72% for malignant neoplasms, cardiovascular disease, respiratory diseases, and total mortality, respectively, for each degree Celsius increase above the optimum in the preceding month. For temperatures below the optimum, mortality increased 0.22, 1.69, 5.15, and 1.37%, respectively, for each degree Celsius decrease below the optimum in the preceding month. Mortality increased significantly during all of the heat waves studied, and the elderly were most effected by extreme heat. The heat waves led to increases in mortality due to all of the selected causes, especially respiratory mortality. Average total excess mortality during the heat waves studied was 12.1%, or 39.8 deaths/day. The average excess mortality during the cold spells was 12.8% or 46.6 deaths/day, which was mostly attributable to the increase in cardiovascular mortality and mortality among the elderly. The results concerning the forward displacement of deaths due to heat waves were not conclusive. We found no cold-induced forward displacement of deaths
Seawater acidification more than warming presents a challenge for two Antarctic macroalgal-associated amphipods
Elevated atmospheric pCO2 concentrations are triggering seawater pH reductions and seawater temperature increases along the western Antarctic Peninsula (WAP). These factors in combination have the potential to influence organisms in an antagonistic, additive, or synergistic manner. The amphipods Gondogeneia antarctica and Paradexamine fissicauda represent prominent members of macroalgal-associated mesograzer assemblages of the WAP. Our primary objective was to investigate amphipod behavioral and physiological responses to reduced seawater pH and elevated temperature to evaluate potential cascading ecological impacts. For 90 d, amphipods were exposed to combinations of seawater conditions based on present ambient (pH 8.0, 1.5°C) and predicted end-of-century conditions (pH 7.6, 3.5°C). We recorded survival, molt frequency, and macroalgal consumption rates as well as change in wet mass and proximate body composition (protein and lipid). Survival for both species declined significantly at reduced pH and co-varied with molt frequency. Consumption rates in G. antarctica were significantly higher at reduced pH and there was an additive pH-temperature effect on consumption rates in P. fissicauda. Body mass was reduced for G. antarctica at elevated temperature, but there was no significant effect of pH or temperature on body mass in P. fissicauda. Exposure to the pH or temperature levels tested did not induce significant changes in whole body biochemical composition of G. antarctica, but exposure to elevated temperature resulted in a significant increase in whole body protein content of P. fissicauda. Our study indicates that while elevated temperature causes sub-lethal impacts on both species of amphipods, reduced pH causes significant mortality
Leaf Detritus Processing in an Ozark Cave Stream
Detritus processing rates and mechanisms were investigated in an Ozark cave stream using post oak (Quercus stellata) leaf packs. The 5 g leaf packs lost ca. 30% of their dry weight within 84 days, resulting in a calculated K value of 0.05. This was an unexpectedly high rate of utilization. Diversity of invertebrates associated with the leaf packs was very low. Stygobromus ozarkensis (Amphipoda) was the only shredder. The two isopods, Caecidotea stiladactyla and Lirceus sp. were the only collectors observed other than a single species of oligochaete worm. Our data indicated that leaf detritus processing rates are virtually independent of the number of types of invertebrates associated with the leaf packs
- …