112 research outputs found

    Conformational relaxation following reduction of the photoactive bacteriopheophytin in reaction centers from Blastochloris viridis. Influence of mutations at position M208

    Get PDF
    AbstractThe photochemically trapped bacteriopheophytin (BPh) b radical anion in the active branch (ΦA−) of reaction centers (RCs) from Blastochloris (formerly called Rhodopseudomonas) viridis is characterized by 1H-ENDOR as well as optical absorption spectroscopy. The two site-directed mutants YF(M208) and YL(M208), in which tyrosine at position M208 is replaced by phenylalanine and leucine, respectively, are investigated and compared with the wild type. The residue at M208 is in close proximity to the primary electron donor, P, the monomeric bacteriochlorophyll (BChl), BA, and the BPh, ΦA, that are involved in the transmembrane electron transfer to the quinone, QA, in the RC. The analysis of the ENDOR spectra of ΦA− at 160 K indicates that two distinct states of ΦA− are present in the wild type and the mutant YF(M208). Based on a comparison with ΦA− in RCs of Rhodobacter sphaeroides the two states are interpreted as torsional isomers of the 3-acetyl group of ΦA. Only one ΦA− state occurs in the mutant YL(M208). This effect of the leucine residue at position M208 is explained by steric hindrance that locks the acetyl group in one specific position. On the basis of these results, an interpretation of the optical absorption difference spectrum of the state ΦA−QA− is attempted. This state can be accumulated at 100 K and undergoes an irreversible change between 100 and 200 K [Tiede et al., Biochim. Biophys. Acta 892 (1987) 294–302]. The corresponding absorbance changes in the BChl Qx and Qy regions observed in the wild type also occur in the YF(M208) mutant but not in YL(M208). The observed changes in the wild type and YF(M208) are assigned to RCs in which the 3-acetyl group of ΦA changes its orientation. It is concluded that this distinct structural relaxation of ΦA can significantly affect the optical properties of BA and contribute to the light-induced absorption difference spectra

    Species-specific differences of the spectroscopic properties of P700 - Analysis of the influence of non-conserved amino acid residues by site-directed mutagenesis of photosystem I from Chlamydomonas reinhardtii

    Get PDF
    We applied optical spectroscopy, magnetic resonance techniques, and redox titrations to investigate the properties of the primary electron donor P700 in photosystem I (PS I) core complexes from cyanobacteria (Thermosynechococcus elongatus, Spirulina platensis, and Synechocystis sp. PCC 6803), algae (Chlamydomonas reinhardtii CC2696), and higher plants (Spinacia oleracea). Remarkable species-specific differences of the optical properties of P700 were revealed monitoring the ((3)P700-P700) and (P700(+.)-P700) absorbance and CD difference spectra. The main bleaching band in the Q(y) region differs in peak position and line width for the various species. In cyanobacteria the absorbance of P700 extends more to the red compared with algae and higher plants which is favorable for energy transfer from red core antenna chlorophylls to P700 in cyanobacteria. The amino acids in the environment of P700 are highly conserved with two distinct deviations. In C. reinhardtii a Tyr is found at position PsaB659 instead of a Trp present in all other organisms, whereas in Synechocystis a Phe is found instead of a Trp at the homologous position PsaA679. We constructed several mutants in C. reinhardtii CC2696. Strikingly, no PS I could be detected in the mutant YW B659 indicating steric constraints unique to this organism. In the mutants WA A679 and YA B659 significant changes of the spectral features in the ((3)P700 - P700), the (P700(+.)-P700) absorbance difference and in the (P700(+.)-P700) CD difference spectra are induced. The results indicate structural differences among PS I from higher plants, algae, and cyanobacteria and give further insight into specific protein-cofactor interactions contributing to the optical spectra

    Investigation of the Stationary and Transient A1·− Radical in Trp → Phe Mutants of Photosystem I

    Get PDF
    Photosystem I (PS I) contains two symmetric branches of electron transfer cofactors. In both the A- and B-branches, the phylloquinone in the A1 site is π-stacked with a tryptophan residue and is H-bonded to the backbone nitrogen of a leucine residue. In this work, we use optical and electron paramagnetic resonance (EPR) spectroscopies to investigate cyanobacterial PS I complexes, where these tryptophan residues are changed to phenylalanine. The time-resolved optical data show that backward electron transfer from the terminal electron acceptors to P700·+ is affected in the A- and B-branch mutants, both at ambient and cryogenic temperatures. These results suggest that the quinones in both branches take part in electron transport at all temperatures. The electron-nuclear double resonance (ENDOR) spectra of the spin-correlated radical pair P700·+A1·− and the photoaccumulated radical anion A1·−, recorded at cryogenic temperature, allowed the identification of characteristic resonances belonging to protons of the methyl group, some of the ring protons and the proton hydrogen-bonded to phylloquinone in the wild type and both mutants. Significant changes in PS I isolated from the A-branch mutant are detected, while PS I isolated from the B-branch mutant shows the spectral characteristics of wild-type PS I. A possible short-lived B-branch radical pair cannot be detected by EPR due to the available time resolution; therefore, only the A-branch quinone is observed under conditions typically employed for EPR and ENDOR spectroscopies

    Influence of Mistletoe Extracts and Its Components on in Vitro Physiology of Cancer Cells

    No full text

    Günstiger Verlauf eines persistierenden malignen Aszites

    Full text link
    Malignant ascites is a frequent complication in oncological diseases. There are no standard therapies for any primary tumour. We report the case of a woman, aged 49 years at the time of primary diagnosis, who suffered from recurrent ascites resulting from liver metastasis of breast cancer. Based on the literature and former experience of our department, mistletoe extract was repeatedly applied intraperitoneally at the occasion of decompressive punctures. The further course of the disease suggests a significant role of mistletoe in achieved symptom control, which also resulted in a considerable improvement in quality of life. The mistletoe solution was well tolerated. Relevant mechanisms of action in addition to the well-known immunomodulating properties of mistletoe could be direct cytotoxic and adjuvant effects to the concomitantly administered chemotherapy of carboplatin/paclitaxel

    Decay kinetics and quantum yields of fluorescence in photosystem I from Synechococcus elongatus with P700 in the reduced and oxidized state: are the kinetics of excited state decay trap-limited or transfer-limited?

    Get PDF
    Transfer and trapping of excitation energy in photosystem I (PS I) trimers isolated from Synechococcus elongatus have been studied by an approach combining fluorescence induction experiments with picosecond time-resolved fluorescence measurements, both at room temperature (RT) and at low temperature (5 K). Special attention was paid to the influence of the oxidation state of the primary electron donor P700. A fluorescence induction effect has been observed, showing a approximately 12% increase in fluorescence quantum yield upon P700 oxidation at RT, whereas at temperatures below 160 K oxidation of P700 leads to a decrease in fluorescence quantum yield ( approximately 50% at 5 K). The fluorescence quantum yield for open PS I (with P700 reduced) at 5 K is increased by approximately 20-fold and that for closed PS I (with P700 oxidized) is increased by approximately 10-fold, as compared to RT. Picosecond fluorescence decay kinetics at RT reveal a difference in lifetime of the main decay component: 34 +/- 1 ps for open PS I and 37 +/- 1 ps for closed PS I. At 5 K the fluorescence yield is mainly associated with long-lived components (lifetimes of 401 ps and 1.5 ns in closed PS I and of 377 ps, 1.3 ns, and 4.1 ns in samples containing approximately 50% open and 50% closed PS I). The spectra associated with energy transfer and the steady-state emission spectra suggest that the excitation energy is not completely thermally equilibrated over the core-antenna-RC complex before being trapped. Structure-based modeling indicates that the so-called red antenna pigments (A708 and A720, i.e., those with absorption maxima at 708 nm and 720 nm, respectively) play a decisive role in the observed fluorescence kinetics. The A720 are preferentially located at the periphery of the PS I core-antenna-RC complex; the A708 must essentially connect the A720 to the reaction center. The excited-state decay kinetics turn out to be neither purely trap limited nor purely transfer (to the trap) limited, but seem to be rather balanced

    Identification of the Special Pair and ChlZ of Photosystem II in Acaryochloris marina

    No full text
    • …
    corecore