2,546 research outputs found
High-frequency dielectric spectroscopy of batio3 core - silica shell nanocomposites: Problem of interdiffusion
Three types of BaTiO3 core - amorphous nano-shell composite ceramics were
processed from the same core-shell powder by standard sintering, spark-plasma
sintering and two-step sintering techniques and characterized by XRD, HRSEM and
broad-band dielectric spectroscopy in the frequency range 10^3 - 10^13 Hz
including the THz and IR range. The samples differed by porosity and by the
amount of interdiffusion from the cores to shells, in correlation with their
increasing porosity. The dielectric spectra were also calculated using suitable
models based on effective medium approximation. The measurements revealed a
strong dielectric dispersion below the THz range, which cannot be explained by
the modeling, and whose strength was in correlation with the degree of
interdiffusion. We assigned it to an effect of the interdiffusion layers,
giving rise to a strong interfacial polarization. It appears that the
high-frequency dielectric spectroscopy is an extremely sensitive tool for
detection of any gradient layers and sample inhomogeneities even in dielectric
materials with negligible conductivity
In situ visualization of Ni-Nb bulk metallic glasses phase transition
We report the results of the Ni-based bulk metallic glass structural
evolution and crystallization behavior in situ investigation. The X-ray
diffraction (XRD), transmission electron microscopy (TEM), nano-beam
diffraction (NBD), differential scanning calorimetry (DSC), radial distribution
function (RDF) and scanning probe microscopy/spectroscopy (STM/STS) techniques
were applied to analyze the structure and electronic properties of Ni63.5Nb36.5
glasses before and after crystallization. It was proved that partial surface
crystallization of Ni63.5Nb36.5 can occur at the temperature lower than for the
full sample crystallization. According to our STM measurements the primary
crystallization is originally starting with the Ni3Nb phase formation. It was
shown that surface crystallization drastically differs from the bulk
crystallization due to the possible surface reconstruction. The mechanism of
Ni63.5Nb36.5 glass alloy 2D-crystallization was suggested, which corresponds to
the local metastable (3x3)-Ni(111) surface phase formation. The possibility of
different surface nano-structures development by the annealing of the
originally glassy alloy in ultra high vacuum at the temperature lower, than the
crystallization temperature was shown. The increase of mean square surface
roughness parameter Rq while moving from glassy to fully crystallized state can
be caused by concurrent growth of Ni3Nb and Ni6Nb7 bulk phases. The simple
empirical model for the estimation of Ni63.5Nb36.5 cluster size was suggested,
and the obtained values (7.64 A, 8.08 A) are in good agreement with STM
measurements data (8 A-10 A)
Noninvasive Embedding of Single Co Atoms in Ge(111)2x1 Surfaces
We report on a combined scanning tunneling microscopy (STM) and density
functional theory (DFT) based investigation of Co atoms on Ge(111)2x1 surfaces.
When deposited on cold surfaces, individual Co atoms have a limited diffusivity
on the atomically flat areas and apparently reside on top of the upper
pi-bonded chain rows exclusively. Voltage-dependent STM imaging reveals a
highly anisotropic electronic perturbation of the Ge surface surrounding these
Co atoms and pronounced one-dimensional confinement along the pi-bonded chains.
DFT calculations reveal that the individual Co atoms are in fact embedded in
the Ge surface, where they occupy a quasi-stationary position within the big
7-member Ge ring in between the 3rd and 4th atomic Ge layer. The energy needed
for the Co atoms to overcome the potential barrier for penetration in the Ge
surface is provided by the kinetic energy resulting from the deposition
process. DFT calculations further demonstrate that the embedded Co atoms form
four covalent Co-Ge bonds, resulting in a Co4+ valence state and a 3d5
electronic configuration. Calculated STM images are in perfect agreement with
the experimental atomic resolution STM images for the broad range of applied
tunneling voltages.Comment: 19 pages, 15 figures, 3 table
Magnetodielectric effect and optic soft mode behaviour in quantum paraelectric EuTiO3 ceramics
Infrared reflectivity and time-domain terahertz transmission spectra of
EuTiO3 ceramics revealed a polar optic phonon at 6 - 300K, whose softening is
fully responsible for the recently observed quantum paraelectric behaviour.
Even if our EuTiO3 ceramics show lower permittivity than the single crystal due
to a reduced density and/or small amount of secondary pyrochlore Eu2Ti2O7
phase, we confirmed the magnetic field dependence of the permittivity, also
slightly smaller than in single crystal. Attempt to reveal the soft phonon
dependence at 1.8K on the magnetic field up to 13T remained below the accuracy
of our infrared reflectivity experiment
Infrared and THz studies of polar phonons and improper magnetodielectric effect in multiferroic BFO3 ceramics
BFO3 ceramics were investigated by means of infrared reflectivity and time
domain THz transmission spectroscopy at temperatures 20 - 950 K, and the
magnetodielectric effect was studied at 10 - 300 K, with the magnetic field up
to 9 T. Below 175 K, the sum of polar phonon contributions into the
permittivity corresponds to the value of measured permittivity below 1 MHz. At
higher temperatures, a giant low-frequency permittivity was observed, obviously
due to the enhanced conductivity and possible Maxwell-Wagner contribution.
Above 200 K the observed magnetodielectric effect is caused essentially through
the combination of magnetoresistance and the Maxwell-Wagner effect, as recently
predicted by Catalan (Appl. Phys. Lett. 88, 102902 (2006)). Since the
magnetodielectric effect does not occur due to a coupling of polarization and
magnetization as expected in magnetoferroelectrics, we call it improper
magnetodielectric effect. Below 175 K the magnetodielectric effect is by
several orders of magnitude lower due to the decreased conductivity. Several
phonons exhibit gradual softening with increasing temperature, which explains
the previously observed high-frequency permittivity increase on heating. The
observed non-complete phonon softening seems to be the consequence of the
first-order nature of the ferroelectric transition.Comment: subm. to PRB. revised version according to referees' report
Hertz-to-infrared electrodynamics of single-crystalline barium-lead hexaferrite Ba1-xPbxFe12O19
Broadband electrodynamic response of single-crystalline lead-substituted barium hexaferrite Ba1-xPbxFe12O19 is studied at temperatures from 5 to 300 K in the range from 1 Hz to 240 THz that includes radio, sub-terahertz, terahertz and infrared frequencies and altogether spans over 14 frequency decades. Discovered phenomena include relaxational radio-frequency dynamics of domains and domain walls, temperature-unstable terahertz excitations connected with electric dipoles induced by off-center displacements in the ab-plane of the lead ions, narrow terahertz excitations associated with electronic transitions between the fine-structure components of the Fe2+ground state, dielectric gigahertz resonances presumably of magneto-electric origin and polar lattice vibrations
Hybridization and interference effects for localized superconducting states in strong magnetic field
Within the Ginzburg-Landau model we study the critical field and temperature
enhancement for crossing superconducting channels formed either along the
sample edges or domain walls in thin-film magnetically coupled superconducting
- ferromagnetic bilayers. The corresponding Cooper pair wave function can be
viewed as a hybridization of two order parameter (OP) modes propagating along
the boundaries and/or domain walls. Different momenta of hybridized OP modes
result in the formation of vortex chains outgoing from the crossing point of
these channels. Near this crossing point the wave functions of the modes merge
giving rise to the increase in the critical temperature for a localized
superconducting state. The origin of this critical temperature enhancement
caused by the wave function squeezing is illustrated for a limiting case of
approaching parallel boundaries and/or domain walls. Using both the variational
method and numerical simulations we have studied the critical temperature
dependence and OP structure vs the applied magnetic field and the angle between
the crossing channels.Comment: 12 pages, 13 figure
Coulomb singularity effects in tunnelling spectroscopy of individual impurities
Non-equilibrium Coulomb effects in resonant tunnelling processes through deep
impurity states are analyzed. It is shown that Coulomb vertex corrections to
the tunnelling transfer amplitude lead to a power-law singularity in current-
voltage characteristicsComment: 7 pages, 2 figure
- …