3,776 research outputs found
Online Pattern Matching for String Edit Distance with Moves
Edit distance with moves (EDM) is a string-to-string distance measure that
includes substring moves in addition to ordinal editing operations to turn one
string to the other. Although optimizing EDM is intractable, it has many
applications especially in error detections. Edit sensitive parsing (ESP) is an
efficient parsing algorithm that guarantees an upper bound of parsing
discrepancies between different appearances of the same substrings in a string.
ESP can be used for computing an approximate EDM as the L1 distance between
characteristic vectors built by node labels in parsing trees. However, ESP is
not applicable to a streaming text data where a whole text is unknown in
advance. We present an online ESP (OESP) that enables an online pattern
matching for EDM. OESP builds a parse tree for a streaming text and computes
the L1 distance between characteristic vectors in an online manner. For the
space-efficient computation of EDM, OESP directly encodes the parse tree into a
succinct representation by leveraging the idea behind recent results of a
dynamic succinct tree. We experimentally test OESP on the ability to compute
EDM in an online manner on benchmark datasets, and we show OESP's efficiency.Comment: This paper has been accepted to the 21st edition of the International
Symposium on String Processing and Information Retrieval (SPIRE2014
Entangled Quantum States Generated by Shor's Factoring Algorithm
The intermediate quantum states of multiple qubits, generated during the
operation of Shor's factoring algorithm are analyzed. Their entanglement is
evaluated using the Groverian measure. It is found that the entanglement is
generated during the pre-processing stage of the algorithm and remains nearly
constant during the quantum Fourier transform stage. The entanglement is found
to be correlated with the speedup achieved by the quantum algorithm compared to
classical algorithms.Comment: 7 pages, 4 figures submitted to Phys. Rev.
Algebraic analysis of quantum search with pure and mixed states
An algebraic analysis of Grover's quantum search algorithm is presented for
the case in which the initial state is an arbitrary pure quantum state of n
qubits. This approach reveals the geometrical structure of the quantum search
process, which turns out to be confined to a four-dimensional subspace of the
Hilbert space. This work unifies and generalizes earlier results on the time
evolution of the amplitudes during the quantum search, the optimal number of
iterations and the success probability. Furthermore, it enables a direct
generalization to the case in which the initial state is a mixed state,
providing an exact formula for the success probability.Comment: 13 page
Characterization of pure quantum states of multiple qubits using the Groverian entanglement measure
The Groverian entanglement measure, G(psi), is applied to characterize a
variety of pure quantum states |psi> of multiple qubits. The Groverian measure
is calculated analytically for certain states of high symmetry, while for
arbitrary states it is evaluated using a numerical procedure. In particular, it
is calculated for the class of Greenberger-Horne-Zeilinger states, the W states
as well as for random pure states of n qubits. The entanglement generated by
Grover's algorithm is evaluated by calculating G(psi) for the intermediate
states that are obtained after t Grover iterations, for various initial states
and for different sets of the marked states.Comment: 28 pages, 5 figure
A Minimum-Labeling Approach for Reconstructing Protein Networks across Multiple Conditions
The sheer amounts of biological data that are generated in recent years have
driven the development of network analysis tools to facilitate the
interpretation and representation of these data. A fundamental challenge in
this domain is the reconstruction of a protein-protein subnetwork that
underlies a process of interest from a genome-wide screen of associated genes.
Despite intense work in this area, current algorithmic approaches are largely
limited to analyzing a single screen and are, thus, unable to account for
information on condition-specific genes, or reveal the dynamics (over time or
condition) of the process in question. Here we propose a novel formulation for
network reconstruction from multiple-condition data and devise an efficient
integer program solution for it. We apply our algorithm to analyze the response
to influenza infection in humans over time as well as to analyze a pair of ER
export related screens in humans. By comparing to an extant, single-condition
tool we demonstrate the power of our new approach in integrating data from
multiple conditions in a compact and coherent manner, capturing the dynamics of
the underlying processes.Comment: Peer-reviewed and presented as part of the 13th Workshop on
Algorithms in Bioinformatics (WABI2013
Surface states in nearly modulated systems
A Landau model is used to study the phase behavior of the surface layer for
magnetic and cholesteric liquid crystal systems that are at or near a Lifshitz
point marking the boundary between modulated and homogeneous bulk phases. The
model incorporates surface and bulk fields and includes a term in the free
energy proportional to the square of the second derivative of the order
parameter in addition to the usual term involving the square of the first
derivative. In the limit of vanishing bulk field, three distinct types of
surface ordering are possible: a wetting layer, a non-wet layer having a small
deviation from bulk order, and a different non-wet layer with a large deviation
from bulk order which decays non-monotonically as distance from the wall
increases. In particular the large deviation non-wet layer is a feature of
systems at the Lifshitz point and also those having only homogeneous bulk
phases.Comment: 6 pages, 7 figures, submitted to Phys. Rev.
Magnetization steps in a diluted Heisenberg antiferromagnetic chain: Theory and experiments on TMMC:Cd
A theory for the equilibrium low-temperature magnetization M of a diluted
Heisenberg antiferromagnetic chain is presented. The magnetization curve, M
versus B, is calculated using the exact contributions of finite chains with 1
to 5 spins, and the "rise and ramp approximation" for longer chains. Some
non-equilibrium effects that occur in a rapidly changing B, are also
considered. Specific non-equilibrium models based on earlier treatments of the
phonon bottleneck, and of spin flips associated with cross relaxation and with
level crossings, are discussed. Magnetization data on powders of TMMC diluted
with cadmium [i.e., (CH_3)_4NMn_xCd_(1-x)Cl_3, with 0.16<=x<=0.50 were measured
at 0.55 K in 18 T superconducting magnets. The field B_1 at the first MST from
pairs is used to determine the NN exchange constant, J, which changes from -5.9
K to -6.5 K as x increases from 0.16 to 0.50. The magnetization curves obtained
in the superconducting magnets are compared with simulations based on the
equilibrium theory. Data for the differential susceptibility, dM/dB, were taken
in pulsed magnetic fields (7.4 ms duration) up to 50 T, with the powder samples
in a 1.5 K liquid-helium bath. Non-equilibrium effects, which became more
severe as x decreased, were observed. The non-equilibrium effects are
tentatively interpreted using the "Inadequate Heat Flow Scenario," or to
cross-relaxation, and crossings of energy levels, including those of excited
states.Comment: 16 pages, 14 figure
- …
