205 research outputs found

    Detection of a z=0.0515, 0.0522 absorption system in the QSO S4 0248+430 due to an intervening galaxy

    Get PDF
    In some of the few cases where the line of sight to a Quasi-Stellar Object (QSO) passes near a galaxy, the galaxy redshift is almost identical to an absorption redshift in the spectrum of the QSO. Although these relatively low redshift QSO-galaxy pairs may not be typical of the majority of the narrow heavy-element QSO absorption systems, they provide a direct measure of column densities in the outer parts of galaxies and some limits on the relative abundances of the gas. Observations are presented here of the QSO S4 0248+430 and a nearby anonymous galaxy (Kuhr 1977). The 14 second separation of the line of sight to the QSO (z sub e = 1.316) and the z=0.052 spiral galaxy, (a projected separation of 20 kpc ((h sub o = 50, q sub o = 0)), makes this a particularly suitable pair for probing the extent and content of gas in the galaxy. Low resolution (6A full width half maximum), long slit charge coupled device (CCD) spectra show strong CA II H and K lines in absorption at the redshift of the galaxy (Junkkarinen 1987). Higher resolution spectra showing both Ca II H and K and Na I D1 and D2 in absorption and direct images are reported here

    Temperature and Kinematics of CIV Absorption Systems

    Full text link
    We use Keck HIRES spectra of three intermediate redshift QSOs to study the physical state and kinematics of the individual components of CIV selected heavy element absorption systems. Fewer than 8 % of all CIV lines with column densities greater than 10^{12.5} cm^{-2} have Doppler parameters b < 6 km/s. A formal decomposition into thermal and non-thermal motion using the simultaneous presence of SiIV gives a mean thermal Doppler parameter b_{therm}(CIV) = 7.2 km/s, corresponding to a temperature of 38,000 K although temperatures possibly in excess of 300,000 K occur occasionally. We also find tentative evidence for a mild increase of temperature with HI column density. Non-thermal motions within components are typically small (< 10 km/s) for most systems, indicative of a quiescent environment. The two-point correlation function (TPCF) of CIV systems on scales up to 500 km/s suggests that there is more than one source of velocity dispersion. The shape of the TPCF can be understood if the CIV systems are caused by ensembles of objects with the kinematics of dwarf galaxies on a small scale, while following the Hubble flow on a larger scale. Individual high redshift CIV components may be the building blocks of future normal galaxies in a hierarchical structure formation scenario.Comment: submitted to the ApJ Letters, March 16, 1996 (in press); (13 Latex pages, 4 Postscript figures, and psfig.sty included

    NNSA ASC Exascale Environment Planning, Applications Working Group, Report February 2011

    Get PDF
    The scope of the Apps WG covers three areas of interest: Physics and Engineering Models (PEM), multi-physics Integrated Codes (IC), and Verification and Validation (V&amp;V). Each places different demands on the exascale environment. The exascale challenge will be to provide environments that optimize all three. PEM serve as a test bed for both model development and 'best practices' for IC code development, as well as their use as standalone codes to improve scientific understanding. Rapidly achieving reasonable performance for a small team is the key to maintaining PEM innovation. Thus, the environment must provide the ability to develop portable code at a higher level of abstraction, which can then be tuned, as needed. PEM concentrate their computational footprint in one or a few kernels that must perform efficiently. Their comparative simplicity permits extreme optimization, so the environment must provide the ability to exercise significant control over the lower software and hardware levels. IC serve as the underlying software tools employed for most ASC problems of interest. Often coupling dozens of physics models into very large, very complex applications, ICs are usually the product of hundreds of staff-years of development, with lifetimes measured in decades. Thus, emphasis is placed on portability, maintainability and overall performance, with optimization done on the whole rather than on individual parts. The exascale environment must provide a high-level standardized programming model with effective tools and mechanisms for fault detection and remediation. Finally, V&amp;V addresses the infrastructure and methods to facilitate the assessment of code and model suitability for applications, and uncertainty quantification (UQ) methods for assessment and quantification of margins of uncertainty (QMU). V&amp;V employs both PEM and IC, with somewhat differing goals, i.e., parameter studies and error assessments to determine both the quality of the calculation and to estimate expected deviations of simulations from experiments. The exascale environment must provide a performance envelope suitable both for capacity calculations (high through-put) and full system capability runs (high performance). Analysis of the results place shared demand on both the I/O as well as the visualization subsystems

    1608+656: A Gravitationally Lensed PostStarburst Radio Galaxy

    Get PDF
    The gravitational lens system 1608+656 displays four flat-spectrum, pointlike components that are the images of the unresolved core of a double-lobed radio source. The lensing mass is a galaxy at z = 0.630. New spectra of this system enable us to determine a conclusive redshift of 1.394 for the lensed object. The spectra show prominent high-order Balmer absorption lines and Mg II absorption. These lines, and the absence of [O II] emission, indicate that this is a poststarburst or E + A galaxy. It is unique among lensed objects in not being a quasar and among E + A galaxies in having the highest known redshift. Even allowing for lens magnification, the lensed object is a very luminous galaxy, with an absolute magnitude, M(r) = -22.8 mag. The deconvolved infrared image indicates that the galaxy may be slightly resolved. The radio luminosity density of the lobes is L_(1.4) = 5.78 × 10^(25) W Hz^(-1), which puts the source on the boundary between FR I and FR II radio galaxies. Together with the redshift for the lens and a satisfactory mass model, the determination of the lensed object redshift makes this system an excellent candidate for measuring H_0

    Security Monitoring System for a Bulk Foodstuff Transport Container

    Get PDF
    A security monitoring system provides for the secure transport of a bulk foodstuff container. The system includes an electromechanical locking mechanism allowing access by only authorized persons, a positional locator for determining the geographical position of the bulk foodstuff transport container, and a controller associated with the transport container. The controller controls operation of the electromechanical locking mechanism, stores data received from the electromechanical locking mechanism and the positional locator, and communicates with a remote data processor in near real time. A handheld user interface device is configured to control operation of the controller, to process and store data received from the controller, and to communicate with the remote data processor. Unique identifiers are provided for the bulk foodstuff transport container, the transport vehicle, any storage container from which or into which a bulk foodstuff is transferred, and any authorized operator of the security monitoring system

    Seahawk: moving beyond HTML in Web-based bioinformatics analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Traditional HTML interfaces for input to and output from Bioinformatics analysis on the Web are highly variable in style, content and data formats. Combining multiple analyses can therfore be an onerous task for biologists. Semantic Web Services allow automated discovery of conceptual links between remote data analysis servers. A shared data ontology and service discovery/execution framework is particularly attractive in Bioinformatics, where data and services are often both disparate and distributed. Instead of biologists copying, pasting and reformatting data between various Web sites, Semantic Web Service protocols such as MOBY-S hold out the promise of seamlessly integrating multi-step analysis.</p> <p>Results</p> <p>We have developed a program (Seahawk) that allows biologists to intuitively and seamlessly chain together Web Services using a data-centric, rather than the customary service-centric approach. The approach is illustrated with a ferredoxin mutation analysis. Seahawk concentrates on lowering entry barriers for biologists: no prior knowledge of the data ontology, or relevant services is required. In stark contrast to other MOBY-S clients, in Seahawk users simply load Web pages and text files they already work with. Underlying the familiar Web-browser interaction is an XML data engine based on extensible XSLT style sheets, regular expressions, and XPath statements which import existing user data into the MOBY-S format.</p> <p>Conclusion</p> <p>As an easily accessible applet, Seahawk moves beyond standard Web browser interaction, providing mechanisms for the biologist to concentrate on the analytical task rather than on the technical details of data formats and Web forms. As the MOBY-S protocol nears a 1.0 specification, we expect more biologists to adopt these new semantic-oriented ways of doing Web-based analysis, which empower them to do more complicated, <it>ad hoc </it>analysis workflow creation without the assistance of a programmer.</p
    • …
    corecore