4,240 research outputs found
Theoretical and lidar studies of the density response of the mesospheric sodium layer to gravity wave perturbations
The density response of atmospheric layers to gravity waves is developed in two forms, an exact solution and a perturbation series solution. The degree of nonlinearity in the layer density response is described by the series solution whereas the exact solution gives insight into the nature of the responses. Density perturbation in an atmospheric layer are shown to be substantially greater than the atmospheric density perturbation associated with the propagation of a gravity wave. Because of the density gradients present in atmospheric layers, interesting effects were observed such as a phase reversal in the linear layer response which occurs near the layer peak. Once the layer response is understood, the sodium layer can be used as a tracer of atmospheric wave motions. A two dimensional digital signal processing technique was developed. Both spatial and temporal filtering are utilized to enhance the resolution by decreasing shot noise by more han 10 dB. Many of the features associated with a layer density response to gravity waves were observed in high resolution density profiles of the mesospheric sodium layer. These include nonlinearities as well as the phase reversal in the linear layer response
Operating manual for the RRL 8 channel data logger
A data collection device which takes measurements from external sensors at user specified time intervals is described. Three sensor ports are dedicated to temperature, air pressure, and dew point. Five general purpose sensor ports are provided. The user specifies when the measurements are recorded as well as when the information is read or stored in a minicomputer or a paper tape
An Effective Theory for Midgap States in Doped Spin Ladder and Spin-Peierls Systems: Liouville Quantum Mechanics
In gapped spin ladder and spin-Peierls systems the introduction of disorder,
for example by doping, leads to the appearance of low energy midgap states. The
fact that these strongly correlated systems can be mapped onto one dimensional
noninteracting fermions provides a rare opportunity to explore systems which
have both strong interactions and disorder. In this paper we show that the
statistics of the zero energy midgap wave functions in these models can be
effectively described by Liouville Quantum Mechanics. This enables us to
calculate the disorder averaged N-point correlation functions of these states
(the explicit calculation is performed for N=2,3). We find that whilst these
midgap states are typically weakly correlated, their disorder averaged
correlation are power law. This discrepancy arises because the correlations are
not self-averaging and averages of the wave functions are dominated by
anomalously strongly correlated configurations.Comment: 13 page latex fil
Superconductivity in a spin liquid - a one dimensional example
We study a one-dimensional model of interacting conduction electrons with a
two-fold degenerate band away from half filling. The interaction includes an
on-site Coulomb repulsion and Hund's rule coupling. We show that such
one-dimensional system has a divergent Cooper pair susceptibility at T = 0,
provided the Coulomb interaction between electrons on the same orbital and
the modulus of the Hund's exchange integral are larger than the
interorbital Coulomb interaction. It is remarkable that the superconductivity
can be achieved for {\it any} sign of . The opening of spectral gaps makes
this state stable with respect to direct electron hopping between the orbitals.
The scaling dimension of the superconducting order parameter is found to be
between 1/4 (small ) and 1/2 (large ).Comment: 11 pages, Latex, no figure
One-dimensional spin-liquid without magnon excitations
It is shown that a sufficiently strong four-spin interaction in the spin-1/2
spin ladder can cause dimerization. Such interaction can be generated either by
phonons or (in the doped state) by the conventional Coulomb repulsion between
the holes. The dimerized phases are thermodynamically undistinguishable from
the Haldane phase, but have dramatically different correlation functions: the
dynamical magnetic susceptibility, instead of displaying a sharp single magnon
peak near , shows only a two-particle threshold separated from the
ground state by a gap.Comment: 9 pages, LaTex, to be published in Phys. Rev. Lett., vol. 78, May
199
Analog and digital simulations of multiplex system performance
Analog and digital simulations of multiplex system performanc
- …