3,465 research outputs found

    Absence of Localization in Certain Field Effect Transistors

    Full text link
    We review some experimental and theoretical results on the metal-to-insulator transition (MIT) observed at zero magnetic field (B=0) in several two-dimensional electron systems (2DES). Scaling of the conductance and magnetic field dependence of the conductance provide convincing evidence that the MIT is driven by Coulomb interactions among the carriers and is dramatically sensitive to spin polarization of the carriers.Comment: 8 pages, LaTeX, figure label change

    Metal-insulator transition and glassy behavior in two-dimensional electron systems

    Full text link
    Studies of low-frequency resistance noise demonstrate that glassy freezing occurs in a two-dimensional electron system in silicon in the vicinity of the metal-insulator transition (MIT). The width of the metallic glass phase, which separates the 2D metal and the (glassy) insulator, depends strongly on disorder, becoming extremely small in high-mobility (low-disorder) samples. The glass transition is manifested by a sudden and dramatic slowing down of the electron dynamics, and by a very abrupt change to the sort of statistics characteristic of complicated multistate systems. In particular, the behavior of the second spectrum, an important fourth-order noise statistic, indicates the presence of long-range correlations between fluctuators in the glassy phase, consistent with the hierarchical picture of glassy dynamics.Comment: Contribution to conference on "Noise as a tool for studying materials" (SPIE), Santa Fe, New Mexico, June 2003; 15 pages, 12 figs. (includes some low-quality figs; send e-mail to get high-quality figs.

    The flux ratio of the [OIII] 5007,4959 lines in AGN: Comparison with theoretical calculations

    Get PDF
    By taking into account relativistic corrections to the magnetic dipole operator, the theoretical [OIII] 5006.843/4958.511 line intensity ratio of 2.98 is obtained. In order to check this new value using AGN spectra we present the measurements of the flux ratio of the [OIII] 4959,5007 emission lines for a sample of 62 AGN, obtained from the Sloan Digital Sky Survey (SDSS) Database and from published observations. We select only high signal-to-noise ratio spectra for which the line shapes of the [OIII] 4959,5007 lines are the same. We obtained an averaged flux ratio of 2.993 +/- 0.014, which is in a good agreement with the theoretical one.Comment: Accepted for publication in the MNRA

    Using the Fermilab Proton Source for a Muon to Electron Conversion Experiment

    Get PDF
    The Fermilab proton source is capable of providing 8 GeV protons for both the future long-baseline neutrino program (NuMI), and for a new program of low energy muon experiments. In particular, if the 8 GeV protons are rebunched and then slowly extracted into an external beamline, the resulting proton beam would be suitable for a muon-to-electron conversion experiment designed to improve on the existing sensitivity by three orders of magnitude. We describe a scheme for the required beam manipulations. The scheme uses the Accumulator for momentum stacking, and the Debuncher for bunching and slow extraction. This would permit simultaneous operation of the muon program with the future NuMI program, delivering 10^20 protons per year at 8 GeV for the muon program at the cost of a modest (~10%) reduction in the protons available to the neutrino program.Comment: 18 pages, 7 figure
    • …
    corecore