5,228 research outputs found

    Spin Dynamics of a Canted Antiferromagnet in a Magnetic Field

    Full text link
    The spin dynamics of a canted antiferromagnet with a quadratic spin-wave dispersion near \vq =0 is shown to possess a unique signature. When the anisotropy gap is negligible, the spin-wave stiffness \dsw (\vq, B) = (\omega_{\vq}-B)/q^2 depends on whether the limit of zero field or zero wavevector is taken first. Consequently, \dsw is a strong function of magnetic field at a fixed wavevector. Even in the presence of a sizeable anisotropy gap, the field dependence of both \dsw and the gap energy distinguishes a canted antiferromagnet from a phase-separated mixture containing both ferromagnetic and antiferromagnetic regions.Comment: 10 pages, 3 figure

    Field induced antiferromagnetism and 17^{17}O Knight shift anomaly in La2_2CuO4_4

    Full text link
    We address the effect of the field induced antiferromagnetism in paramagnetic state of the cuprate weak ferromagnet La2_2CuO4_4. The planar oxygen 17^{17}O Knight shift is shown to be an effective tool to inspect the effects of Dzyaloshinsky-Moriya coupling in cuprates in an external magnetic field. Field induced antiferromagnetism and anisotropic antiferromagnetic contribution to 17^{17}K explain the anomalies observed in 17^{17}O NMR in La2_2CuO4_4. The experimental observation of antiferromagnetic contribution to the 17^{17}O Knight shift provides probably the only way to find out the problem of the sense of Dzyaloshinsky vector in cuprates.Comment: 4 pages, 1 figure, submitted to PR

    Field dependence of the temperature at the peak of the ZFC magnetization

    Full text link
    The effect of an applied magnetic field on the temperature at the maximum of the ZFC magnetization, MZFCM_{ZFC}, is studied using the recently obtained analytic results of Coffey et al. (Phys. Rev. Lett. {\bf 80}(1998) 5655) for the prefactor of the N\'{e}el relaxation time which allow one to precisely calculate the prefactor in the N\'{e}el-Brown model and thus the blocking temperature as a function of the coefficients of the Taylor series expansion of the magnetocrystalline anisotropy. The present calculations indicate that even a precise determination of the prefactor in the N\'{e}el-Brown theory, which always predicts a monotonic decrease of the relaxation time with increasing field, is insufficient to explain the effect of an applied magnetic field on the temperature at the maximum of the ZFC magnetization. On the other hand, we find that the non linear field-dependence of the magnetization along with the magnetocrystalline anisotropy appears to be of crucial importance to the existence of this maximum.Comment: 14 LaTex209 pages, 6 EPS figures. To appear in J. Phys.: Condensed Matte

    Thermally activated escape rates of uniaxial spin systems with transverse field

    Full text link
    Classical escape rates of uniaxial spin systems are characterized by a prefactor differing from and much smaller than that of the particle problem, since the maximum of the spin energy is attained everywhere on the line of constant latitude: theta=const, 0 =< phi =< 2*pi. If a transverse field is applied, a saddle point of the energy is formed, and high, moderate, and low damping regimes (similar to those for particles) appear. Here we present the first analytical and numerical study of crossovers between the uniaxial and other regimes for spin systems. It is shown that there is one HD-Uniaxial crossover, whereas at low damping the uniaxial and LD regimes are separated by two crossovers.Comment: 4 PR pages, 3 figures, final published versio

    Magnetic susceptibility of a CuO2 plane in the La2CuO4 system: I. RPA treatment of the Dzyaloshinskii-Moriya Interactions

    Full text link
    Motivated by recent experiments on undoped La2CuO4, which found pronounced temperature-dependent anisotropies in the low-field magnetic susceptibility, we have investigated a two-dimensional square lattice of S=1/2 spins that interact via Heisenberg exchange plus the symmetric and anti-symmetric Dzyaloshinskii-Moriya anisotropies. We describe the transition to a state with long-ranged order, and find the spin-wave excitations, with a mean-field theory, linear spin-wave analysis, and using Tyablikov's RPA decoupling scheme. We find the different components of the susceptibility within all of these approximations, both below and above the N'eel temperature, and obtain evidence of strong quantum fluctuations and spin-wave interactions in a broad temperature region near the transition.Comment: 20 pages, 2 column format, 22 figure

    Accurate Results from Perturbation Theory for Strongly Frustrated S=1/2S=1/2 Heisenberg Spin Clusters

    Full text link
    We investigate the use of perturbation theory in finite sized frustrated spin systems by calculating the effect of quantum fluctuations on coherent states derived from the classical ground state. We first calculate the ground and first excited state wavefunctions as a function of applied field for a 12-site system and compare with the results of exact diagonalization. We then apply the technique to a 20-site system with the same three fold site coordination as the 12-site system. Frustration results in asymptotically convergent series for both systems which are summed with Pad\'e approximants. We find that at zero magnetic field the different connectivity of the two systems leads to a triplet first excited state in the 12-site system and a singlet first excited state in the 20-site system, while the ground state is a singlet for both. We also show how the analytic structure of the Pad\'e approximants at ∣λ∣≃1|\lambda| \simeq 1 evolves in the complex λ\lambda plane at the values of the applied field where the ground state switches between spin sectors and how this is connected with the non-trivial dependence of the number on the strength of quantum fluctuations. We discuss the origin of this difference in the energy spectra and in the analytic structures. We also characterize the ground and first excited states according to the values of the various spin correlation functions.Comment: Final version, accepted for publication in Physical review

    Evaluation of a ln tan integral arising in quantum field theory

    Full text link
    We analytically evaluate a dilogarithmic integral that is prototypical of volumes of ideal tetrahedra in hyperbolic geometry. We additionally obtain new representations of the Clausen function Cl_2 and the Catalan constant G=Cl_2(\pi/2), as well as new relations between sine and Clausen function values.Comment: 24 pages, no figure

    On the Radial Distribution of White Dwarfs in the Globular Cluster NGC 6397

    Full text link
    We have examined the radial distribution of white dwarfs over a single HST/ACS field in the nearby globular cluster NGC 6397. In relaxed populations, such as in a globular cluster, stellar velocity dispersion, and hence radial distribution, is directly dependent on stellar masses. The progenitors of very young cluster white dwarfs had a mass of ~0.8 solar masses, while the white dwarfs themselves have a mass of ~0.5 solar masses. We thus expect young white dwarfs to have a concentrated radial distribution (like that of their progenitors) that becomes more extended over several relaxation times to mimic that of ~0.5 solar mass main-sequence stars. However, we observe young white dwarfs to have a significantly extended radial distribution compared to both the most massive main sequence stars in the cluster and also to old white dwarfs.Comment: 13 pages including 1 table and 3 figures. Accepted for publication in the MNRAS Letter

    Integral Relaxation Time of Single-Domain Ferromagnetic Particles

    Full text link
    The integral relaxation time \tau_{int} of thermoactivating noninteracting single-domain ferromagnetic particles is calculated analytically in the geometry with a magnetic field H applied parallel to the easy axis. It is shown that the drastic deviation of \tau_{int}^{-1} from the lowest eigenvalue of the Fokker-Planck equation \Lambda_1 at low temperatures, starting from some critical value of H, is the consequence of the depletion of the upper potential well. In these conditions the integral relaxation time consists of two competing contributions corresponding to the overbarrier and intrawell relaxation processes.Comment: 8 pages, 3 figure
    • …
    corecore