641 research outputs found

    Structural and Magnetic Characterization of Large Area, Free-Standing Thin Films of Magnetic Ion Intercalated Dichalcogenides Mn0.25TaS2 and Fe0.25TaS2

    Get PDF
    Free-standing thin films of magnetic ion intercalated transition metal dichalcogenides are produced using ultramicrotoming techniques. Films of thicknesses ranging from 30nm to 250nm were achieved and characterized using transmission electron diffraction and X-ray magnetic circular dichroism. Diffraction measurements visualize the long range crystallographic ordering of the intercalated ions, while the dichroism measurements directly assess the orbital contributions to the total magnetic moment. We thus verify the unquenched orbital moment in Fe0.25TaS2 and measure the fully quenched orbital contribution in Mn0.25TaS2. Such films can be used in a wide variety of ultrafast X-ray and electron techniques that benefit from transmission geometries, and allow measurements of ultrafast structural, electronic, and magnetization dynamics in space and time

    Demonstration of superluminal effects in an absorptionless, non-reflective system

    Full text link
    We present an experimental and theoretical study of a simple, passive system consisting of a birefringent, two-dimensional photonic crystal and a polarizer in series, and show that superluminal dispersive effects can arise even though no incident radiation is absorbed or reflected. We demonstrate that a vector formulation of the Kramers-Kronig dispersion relations facilitates an understanding of these counter-intuitive effects.Comment: 6 pages, 3 figures, accepted on Physical Review Letter

    Rare frustration of optical supercontinuum generation

    Get PDF
    Extremely large, rare events arise in various systems, often representing a defining character of their behavior. Another class of extreme occurrences, unexpected failures, may appear less important, but in applications demanding stringent reliability, the rare absence of an intended effect can be significant. Here, we report the observation of rare gaps in supercontinuum pulse trains, events we term rogue voids. These pulses of unusually small spectral bandwidth follow a reverse-heavy-tailed statistical form. Previous analysis has shown that rogue waves, the opposite extremes in supercontinuum generation, arise by stochastic enhancement of nonlinearity. In contrast, rogue voids appear when spectral broadening is suppressed by competition between pre-solitonic features within the modulation-instability band. This suppression effect can also be externally induced with a weak control pulse.Comment: 17 pages, 5 figure

    Terahertz control of nanotip photoemission

    Get PDF
    The active control of matter by strong electromagnetic fields is of growing importance, with applications all across the optical spectrum from the extreme-ultraviolet to the far-infrared. In recent years, phase-stable terahertz fields have shown tremendous potential for observing and manipulating elementary excitations in solids. In the gas phase, on the other hand, driving free charges with terahertz transients provides insight into ultrafast ionization dynamics. Developing such approaches for locally enhanced terahertz fields in nanostructures will create new means to govern electron currents on the nanoscale. Here, we use single-cycle terahertz transients to demonstrate extensive control over nanotip photoelectron emission. The terahertz near-field is shown to either enhance or suppress photocurrents, with the tip acting as an ultrafast rectifying diode6. We record phase-resolved sub-cycle dynamics and find spectral compression and expansion arising from electron propagation within the terahertz near-field. These interactions produce rich spectro-temporal features and offer unprecedented control over ultrashort free electron pulses for imaging and diffraction

    Coherent diffractive imaging beyond the projection approximation: Waveguiding at extreme ultraviolet wavelengths

    Get PDF
    We study extreme-ultraviolet wave propagation within optically thick nanostructures by means of high-resolution coherent diffractive imaging using high-harmonic radiation. Exit waves from different objects are reconstructed by phase retrieval algorithms, and are shown to be dominated by waveguiding within the sample. The experiments provide a direct visualization of extreme-ultraviolet guided modes, and demonstrate that multiple scattering is a generic feature in extruded nanoscale geometries. The observations are successfully reproduced in numerical and semi-analytical simulations

    COMPETITION AMONG HOSPITALS AND ITS MEASUREMENT: THEORY AND A CASE STUDY

    Get PDF
    Our paper provides several insights on the characteristics of the concept of “Poles d’Excellence Rurale” (PER) through bilateral comparisons with that of Competitive Pole (CP) and cluster. The concept of PER is a French government’ initiative designed for the development of rural areas similar to that of the Competitive Pole. We emphasize important particularities of these concepts by analyzing some of their similarities and major differences.Pole d’Excellence Rurale, Competitive Pole, cluster, rural development
    • …
    corecore